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II. Arithmetic Functions and Dirichlet Series

§1. Dirichlet Series
Defn. An arithmetic function a 7→ an or a(n) is a map from N to R or C.
Notation: For s ∈ C we write s = σ + it.
The Dirichlet series of a is the function

∑∞
n=1 an/n

s.
While the region of convergence of a power series is a disc where it is also

absolutely convergent, the regions of convergence and absolute convergence
of a Dirichlet series are half-planes, possibly different.

Theorem (Half Plane of Absolute Convergence).
(i) If

∑∞
1 an/n

s is absolutely convergent for s = α, real, it is also convergent
for s = σ + it, σ ≥ α.
(ii) There exists σa, the abscissa of absolute convergence, such that

∑∞
1 an/n

s

is absolutely convergent for σ > σa, and not absolutely convergent for σ < σa.

Proof. (i) ns = nσ+it = nσeit logn, so |ns| = nσ. So for σ ≥ α, |an/ns| =
|an|/nσ ≤ |an|/nα, and we know this converges absolutely.
(ii) Let

E := {α ∈ R :
∑

|an|/nα < ∞}, σa = inf{E}.
In (i), given α ∈ E, so E ̸= ϕ. If σ > σa, ∃α ∈ E with α < σ, and then
by (i), σ ∈ E, so

∑
an/n

σ is absolutely convergent. Clearly, if σ < σa, then
σ /∈ E, as σa is an infimum of the set. (Observe that σa is a Dedekind cut.) //

Abel Summation Formula for Dirichlet Series

Again, A(x) :=
∑

n≤x an. Abel’s summation formula for f(x) = 1/xs, f ′(x) =
−s/x1+s gives ∑

n≤x

an/n
s =

A(x)

xs
+ s

∫ x

1

A(x)

x1+s
dx. (∗)

So if s ̸= 0 and A(n)/xs → 0 at ∞, if one of
∑∞

1 an/n
s and s

∫∞
1 A(x)/x1+sdx

converges, both do to the same value (by the Integral Test). Similarly,∑
n>x

an
ns

= −A(x)

xs
+ s

∫ ∞

x

A(x)

x1+s
dx. (∗∗)
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We call
∫∞
1 f(x)/x1+sdx a Dirichlet integral (essentially equivalent to Dirich-

let series). We shall only deal with Dirichlet integrals for functions that are
constant except for jumps at the integers, where they have left and right
limits. This ensures Riemann integrability.

Proposition. If A(x) :=
∑

n≤x an has |A(x)| ≤ Mxα(n ≥ 1, α ≥ 0), the
Dirichlet series F (s) :=

∑∞
n=1 an/n

s converges for s = σ + it, σ > α. Write
Fx(s) :=

∑
n≤x an/n

s. Then

|F (s)| ≤ M |s|
σ − α

; |F (s)− Fx(s)| ≤
M

xσ−α

(
|s|

σ − α
+ 1

)
.

Proof. On the RHS of (∗), |A(x)/xs| ≤ M/xσ−α. Then

|s|
∫ x

1

A(x)

x1+s
dx ≤ |s|

∫ ∞

1

M

xσ−α+1
dx =

M |s|
σ − α

(
1− 1

xσ−α

)
≤ M |s|

σ − α
.

Letting x → ∞ in (∗) gives |F (s)| ≤ M |s|/(σ − α). Similarly for (∗∗). //

Theorem (Half-plane of convergence).
(i) If

∑∞
1 an/n

α converges for some real α, the series
∑∞

1 an/n
s converges for

s = σ + it, σ > α.
(ii) Consequently, there exists σc, the abscissa of convergence (possibly ±∞)
such that

∑∞
1 an/n

s converges for σ > σc and diverges for σ < σc.
(iii) σc ≤ σa ≤ σc + 1.

Proof.(i) Write bn := an/n
α, B(x) :=

∑
n≤x bn. Then

∑
bn converges, so

is bounded: say |B(x)| ≤ M . Take α = 0 in the Prop. above:
∑

bn/n
s

converges (Res > 0). So
∑

an/n
s =

∑
bn/n

s−α converges (σ > α).
(ii) This follows as with σa above.
(iii) σc ≤ σa as absolute convergence implies convergence (so the half-plane
of absolute convergence ⊂ the half-plane of convergence).

|an/ns| = |bn/ns−α| ≤ M/nσ−α.

So for σ > α + 1,
∑

an/n
s is absolutely convergent by the Comparison Test

(
∑

1/nc converges for c > 1). So σa ≤ α+ 1.
This holds for every α > σc. So σa ≤ σc + 1. //
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