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M3PM16/M4PM16 SOLUTIONS 5. 23.2.2012

Q1. − log(1− x) = x+ 1
2
x2 + 1

3
x3 + . . .. So

0 < − log(1− 1/p) =
1

2p2
+

1

3p3
+ . . . <

1

2p2
+

1

2p3
+ . . . =

1

2p(p− 1)
,

summing the GP. Also

∑
p

1

p(p− 1)
<
∑
n

1

n(n− 1)
< ∞.

So by the Comparison Text,∑
p

{− log(1− 1/p)− 1/p} converges.

But (Euler, II.4)
∑

1/p diverges. So
∑{− log(1− 1/p)} diverges also. That

is, the infinite product
∏
(1− 1/p) diverges to 0 (I.5).

Q2 (HW, 4th ed., §22.7 – I find this proof more transparent than the one in
the 5th ed.). With N(x, r) the number of n ≤ x not divisible by any of the
first r primes pk, then

π(x) ≤ N(x, r) + r

(a prime p ≤ x is either one of the first r or not divisible by any of the first
r). By Inclusion-Exclusion (Problems 4 Q2),

N(x, r) = [x]−
∑
i

[x/pi] +
∑
ij

[x/pipj] . . .

The number of square brackets is

1 +

(
r

1

)
+

(
r

2

)
+ . . . = (1 + 1)r = 2r.

Replacing each [.] by . introduces an error of < 1, so

N(x, r) < x−
∑
i

x/pi +
∑
ij

x/pipj . . .+ 2r = x
r∏
1

(1− 1/pk) + 2r.
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Combining,

π(x) ≤ x
r∏
1

(1− 1/pk) + 2r + r : π(x)/x ≤
r∏
1

(1− 1/pk) + (2r + r)/x.

As the product diverges (Q1),
∏r

1 can be made arbitrarily small by taking r
large enough. Then letting x → ∞ gives π(x)/x → 0. //

Q3 (A, Th. 2.15 p.35-6). By contradiction: we assume a is not multiplica-
tive and deduce that a ∗ b is not multiplicative. Let c := a ∗ b. As a is
not multiplicative, there are positive integers m, n with (m,n) = 1 but
a(mn) ̸= a(m)a(n). Choose the pair m and n with mn as small as possible.

If mn = 1, then a(1) ̸= a(1)a(1), so a(1) ̸= 1. As b(1) = 1 (b multiplica-
tive) and c(1) = a(1)b(1) (c := a ∗ b is multiplicative), c(1) = a(1)b(1) =
a(1) ̸= 1, this shows that c = a ∗ b is not multiplicative, a contradiction.

If mn > 1, then by minimality of mn, a(m′n′) = a(m′)a(n′) for all co-
prime m′, n′ with m′n′ > mn. So (as in II.3 Prop.)

c(mn) =
∑

j|m,k|n,jk<mn

a(jk)b(mn/jk) + a(mn)b(1)

=
∑

j|m,k|n,jk<mn

a(j)a(k)b(m/j)b(n/k) + a(mn)

=
∑
j|m

a(j)b(m/j)
∑
k|n

a(k)b(n/k)− a(m)b(n) + a(mn)

= c(m)c(n)− a(m) + a(mn).

As a(mn) ̸= a(m)a(n), this gives c(mn) ̸= c(m)c(n), contradicting multi-
plicativity of c. //

Q4. (i) (see e.g. R, 229-231). Multiplying by ez−1: z = (
∑∞

i=0 Biz
i/i!)(

∑∞
j=1 z

j/j!).
Equate coefficients: the z term gives B0 = 1. For higher terms,

0 =
∑

i+j=n,j>0

Bi

i!
.
1

j!
=

n−1∑
i=0

Bi

i!(n− i)!
=

1

n!

n−1∑
i=0

Bi

(
n

i

)
: 0 =

n−1∑
i=0

Bi

(
n

i

)
.

Replacing n by n+ 1 and picking out the leading term,

(n+ 1)Bn = −
n−1∑
i=0

Bi

(
n+ 1

i

)
,
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as required. The values B1, . . . , B6 can be checked from this.
(ii) From Euler’s formulae cos θ = (eiθ + e−iθ)/2, sin θ = (eiθ − e−iθ)/(2i),

x cotx = ix
(eix + e−ix)

eix − e−ix)
= ix

(e2ix + 1)

e2ix − 1)
= ix

(
1 +

2

e2ix − 1)

)
.

As B0 = 1 and B1 = −1
2
, this gives

x cotx = 1 +
∞∑
2

Bn(2ix)
n/n!

As the LHS is even, so is the RHS, so Bn = 0 for all odd n > 1. So

x cotx = 1 +
∞∑
1

B2n(−)n(2x)2n/(2n)! (a)

(iii) From M2PM3 (Lecture 32, formula (ii), at the end),

cot z =
1

z
+ 2z

∞∑
n=1

1

z2 − n2π2
.

So

z cot z = 1−2z2
∞∑
n=1

1

n2π2
= 1−2

∞∑
n=1

(z/nπ)2/(1−(z/nπ)2) = 1−2
∞∑
n=1

∞∑
m=1

(z/nπ)2m,

expanding as a geometric series. Inverting the order of summation (as we may
by absolute convergence for |z| < 1, and can then use analytic continuation),

z cot z = 1− 2
∞∑

m=1

∞∑
n=1

(z/nπ)2m = 1− 2
∞∑

m=1

(z/π)2mζ(2m). (b)

Equating coefficients in (a), (b),

2(2n)!ζ(2n) = (−)n+1(2π)2nB2n.

This recovers ζ(2) = π2/6 and ζ(4) = π4/90, both proved in M2PM3, and
also gives the next such result, ζ(6) = π6/945. NHB
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