M3PM16/M4PM16 SOLUTIONS TO ASSESSED
COURSEWORK, 2013

MERTENS’ THEOREM WITH REMAINDER.
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Proof. As in L14: write
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Y= zp:(log(l — ];) + 7).
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From Mertens’ Second Theorem and the Constants Lemma (as in L14),
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> —=loglogz + C1 + O(1/logz) =loglogz + v+ X + O(1/log z).

p<z

Now

Zlogl—f Z —I—Z(logl—— —1)

p<z p<x p<zx p p

From the power-series expansion for log(1 — ), the second sum on the right

TR =2 ) ZZ*+OZP‘2>-

p>z p>w P k= 2 p>z
The error term is
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So the second sum is —% + O(l /). So by Mertens’ Second Theorem,
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=loglogz + v+ O(1/logz).
Since e* = 1+ O(]z]) as z — 0, exponentiating gives
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