M3PM16/M4PM16 SOLUTIONS TO EXAMINATION 2012

QL. (i) X
T,=[1/(1 - ];) = ZZl/n > Zfl/n > log x,

p<z
where ¥ denotes a sum over all n with all prime factors < z. But for
O<z<l1
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(by partial fractions — the sum telescopes). So

Sy >1logT, — 3 > loglogz — 1. (8]
Letting 2 — oo: 3-,1/p diverges. [2]
(ii) By Abel summation, with a(n) := Ip(n) (I for indicator function, P for
the set of primes), so A(z) =3 ,<, 1 = 7(x),

f@) =~ @)= gt Ly = !

- zlogx’
Yn<za(n)f(n) = A(x) f(x) — [ A(t) [ (t)dt gives
1 m(x) /l‘ m(t) @ ()
- at+ | dt
gplogp xlogx * 2 t?logt + 2> t2log?t
(m(x) = 0 for x < 2 as 2 is the smallest prime). The first term is O(1/logz) =

o(1) (this only needs 7(z) := >,<, 1 < x); the third term is negligible w.r.t.
the second, which by Chebyshev’s Upper Estimate is of order

z (t/1 t T dt log x [e'S)
/ mdt = / ) du/u® < / du/u* < oco.
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So > 1/(plogp) converges. [10]
All seen (lectures)



Q2. (i). n!+2,...,nl4+nis a string of n — 1 consecutive composite numbers
(each of 2,...,n divides n!).
Alternative proof (seen in problems — HW Th. 5). If 2,3,...,p are all the
primes up to p, then all numbers n up to p are divisible by at least one of
these primes, p’ say, by FTA: p|n, n = p'r’, say. So if ¢ :=2.3.5...p =117,
then all the p — 1 numbers ¢ + 2,9+ 3,9 +4,...,q + p are composite: for
each is of the form ¢ +n = ¢+ p'r' = p'.TIp" + p'r' = p'(+' + [1p"), where
the product is over the primes other than p in the prime-power factorisation
of n (counted with multiplicity), and any repetitions of p. So this string of
p — 1 consecutive numbers forms (part of) a gap between primes. There are
arbitrarily large p (Euclid), so arbitrarily long gaps between primes. [6]
(ii). Write

N :=(2235....p) — 1,

the product being over the primes up to p. Then 4 divides the product, so
N = 4n + 3 for some n (residue 3 = —1 mod 4). N is not divisible by any of
the primes up to p. Since a product of primes with residue 1 has residue 1,
N must have a prime factor with residue 3 mod 4, ¢ = ¢(p) say. Discarding
any p that give a ¢ already encountered, as p runs through the primes we
obtain infinitely many primes ¢ of the form 4n + 3. [6]
(iii) Write
N :=(23,5....p) — 1,

the product again being over the primes up to p. Then 6 divides the product,
so N = 6n+5 for some n (residue 5 = —1 mod 6). As 6n,6n+2,6n+3,6n+4
are composite, the only candidates for primes have residue 1 or 5 mod 6. Since
a product of primes with residue 1 has residue 1, N must have a prime factor
with residue 5 mod 6, ¢ = ¢(p) say. Discarding any p that give a ¢ already
encountered, as p runs through the primes we obtain infinitely many primes
q of the form 6n + 5. [6]
(iv) Bertand’s postulate is that there for every natural number n there is a
prime p with n < p < 2n; equivalently, if p, is the rth prime, p,.1 < 2p,.
This was proved by Erdos in 1932, by elementary means. [2]

All seen (problems), except (iii) (similar to (ii)). (Parts (ii) and (iii) follow
from Dirichlet’s Theorem(s) on primes in arithmetic progressions — stated
but not proved.)



Q3. (i) The class has seen two proofs:
(a) The alternating zeta function (Dirichlet eta function) (o) := >7°(—)""1/n°
converges for o > 0 by the Alternating Series Test. So the half-plane of con-
vergence of the Dirichlet series is 0 > 0. As 0(s) = X pqq 1/1° — Xepen 1/n° =
Yo — > and ((s) = X, + 2., subtraction gives n(s) — ((s) = =23, =
oS (2n)° = —227°C(s): ((s) = n(s)/(1—21%) = n(s)/(1 —e~0-2)Tos2).
As n(1) = log 2 from Abel’s continuity theorem, this gives the analytic con-
tinuation of { to o > 0, where it has a simple pole at 1 of residue 1.
(The other zeros of 1 — 2'7% at s = 1 4 2mwni/log?2 for n a non-zero integer,
are cancelled by zeros of 1, but this is not asked.)
(b) Euler’s summation formula for f(z) = 1/2° gives (as >7°1/n® = ((s)
and [{“dz/z° =1/(s—1))

x — (2]

1 00
C(S):;+1—SA x8+1 d:L’,

and the integral is holomorphic for o > 0. [10]
(ii) The class has seen four proofs: (i) using Complex Analysis to sum the
series (M2PM3); (ii) from the product for sine (M2PM3); (iii) by calculus
(LeVeque I, Ex. 6 p.122; Problems); (iv) by Fourier series (Problems), below.

Write a,, for the Fourier cosine coefficients of |z| on [—m, 7] (|| is even, so
we do not need sine terms). Then
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if n is odd, 0 if n # 0 is even. So

2

T 4 X cos(2m — 1)z
=5 %mg @m—1)2
Putting = 0 gives 0 = I — 23, l/n Soda = T2/8. But ((2) =

Z(lm 1/%2 = Zodd+ Eeven = Eodd +% ( ) ( ) - ’/T2/8, C(2> = 7T2/6. [10]

Seen: (i) (lectures), (ii) (problems).



Q4. (i) The Dirichlet convolution (a * b)(n) := >4, a(d)b(n/d) corresponds
to multiplication of the Dirichlet series for a and b. In the case of u, where
u(n) := 1 for all n = 1,2,..., the Dirichlet series is ((s) := >0°, 1/n°, by
definition. Since

(u*u)(n) => u(du(n/d)=>_ 1=d(n)

dln din

this shows that the divisor function d has Dirichlet series ¢(s)?. [5]

(ii) Theorem. If d,, is the number of divisors of n,

Y d, =zlogz + (27 — 1)z + O(Vx).

n<x

Proof. Take a, = b, = 1 (so (a*b), = d,, by (1)), y = Vx: as A(x) =
B(x) = [z], Dirichlet’s Hyperbola Identity gives

dodn= 3 [x/jl+ X [x/K] = VallVal =2 3 [¢/j] - Vo]Vl [5]
n<r o j<vE K<V i<Va
In each [.] on RHS, write [.] = . — {.}. Each fractional part {.} € [0,1), so
> dy=2 3 2/j+0\)—z+0(z),
n<e j<vE

as (v/x+O0(1))? = x + O(y/z). But (as in Lecture 3, Ch. I. §4, The Integral
Test and Euler’s constant),

1
D l/i = log i+ +0(1/Vr) = Jlog x+7+0(1/Vx).
So (as in Lecture 15, I1.9)

> dy = 2x(log Ve +y+0(1/Vx)) —2+0(Vr) = wlog x+(2y—1)z+0(V/x).

n<x
[10]
Seen (lectures).

N. H. Bingham



