
M3PM16/M4PM16 SOLUTIONS TO EXAMINATION 2012

Q1. (i)

Tx :=
∏
p≤x

1/(1− 1

p
) =

∑∗
x
1/n ≥

∑x

1
1/n ≥ log x,

where
∑∗

x denotes a sum over all n with all prime factors ≤ x. But for
0 < x < 1

− log(1− x) = x+
1

2
x2 +

1

3
x3 + . . . < x+

1

2
x2 +

1

2
x3 + . . . = x+

1
2
x2

1− x
,

so for y > 1

− log(1− 1/y)− 1/y <
1

2y2(1− 1/y)
=

1

2y(y − 1)
.

So if Sx :=
∑

p≤x 1/p,

log Tx−Sx =
∑
p≤x

(
− log(1−1

p
)−1

p

)
<

1

2

∑
p≤x

1/(p(p−1)) <
1

2

∞∑
n=2

1/(n(n−1)) =
1

2

(by partial fractions – the sum telescopes). So
Sx ≥ log Tx − 1

2
≥ log log x− 1

2
. [8]

Letting x → ∞:
∑

p1/p diverges. [2]
(ii) By Abel summation, with a(n) := IP (n) (I for indicator function, P for
the set of primes), so A(x) =

∑
p≤x 1 = π(x),

f(x) =
1

x log x
, f ′(x) = − 1

x2 log x
+
1

x
.− 1

log2x
.
1

x
, −f ′(x) =

1

x2 log x
+

1

x2log2x
,

∑
n≤x a(n)f(n) = A(x)f(x)−

∫ x
1 A(t)f ′(t)dt gives

∑
p≤x

1

p log p
=

π(x)

x log x
+

∫ x

2

π(t)

t2 log t
dt+

∫ x

2

π(t)

t2log2t
dt

(π(x) = 0 for x < 2 as 2 is the smallest prime). The first term is O(1/ log x) =
o(1) (this only needs π(x) :=

∑
p≤x 1 ≤ x); the third term is negligible w.r.t.

the second, which by Chebyshev’s Upper Estimate is of order∫ x

2

(t/ log t)

t2 log t
dt =

∫ x

2

dt

t log2 t
=

∫ log x

log 2
du/u2 ≤

∫ ∞

c
du/u2 < ∞.

So
∑

1/(p log p) converges. [10]
All seen (lectures)
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Q2. (i). n! + 2, . . . , n! +n is a string of n− 1 consecutive composite numbers
(each of 2, . . . , n divides n!).
Alternative proof (seen in problems – HW Th. 5). If 2, 3, . . . , p are all the
primes up to p, then all numbers n up to p are divisible by at least one of
these primes, p′ say, by FTA: p′|n, n = p′r′, say. So if q := 2.3.5 . . . p =

∏
p′,

then all the p − 1 numbers q + 2, q + 3, q + 4, . . . , q + p are composite: for
each is of the form q + n = q + p′r′ = p′.

∏
p′′ + p′r′ = p′(r′ +

∏
p′′), where

the product is over the primes other than p in the prime-power factorisation
of n (counted with multiplicity), and any repetitions of p. So this string of
p− 1 consecutive numbers forms (part of) a gap between primes. There are
arbitrarily large p (Euclid), so arbitrarily long gaps between primes. [6]
(ii). Write

N := (22.3.5. . . . p)− 1,

the product being over the primes up to p. Then 4 divides the product, so
N = 4n+3 for some n (residue 3 = −1 mod 4). N is not divisible by any of
the primes up to p. Since a product of primes with residue 1 has residue 1,
N must have a prime factor with residue 3 mod 4, q = q(p) say. Discarding
any p that give a q already encountered, as p runs through the primes we
obtain infinitely many primes q of the form 4n+ 3. [6]
(iii) Write

N := (2.3, 5. . . . p)− 1,

the product again being over the primes up to p. Then 6 divides the product,
so N = 6n+5 for some n (residue 5 = −1 mod 6). As 6n, 6n+2, 6n+3, 6n+4
are composite, the only candidates for primes have residue 1 or 5 mod 6. Since
a product of primes with residue 1 has residue 1, N must have a prime factor
with residue 5 mod 6, q = q(p) say. Discarding any p that give a q already
encountered, as p runs through the primes we obtain infinitely many primes
q of the form 6n+ 5. [6]
(iv) Bertand’s postulate is that there for every natural number n there is a
prime p with n < p ≤ 2n; equivalently, if pr is the rth prime, pr+1 < 2pr.
This was proved by Erdös in 1932, by elementary means. [2]

All seen (problems), except (iii) (similar to (ii)). (Parts (ii) and (iii) follow
from Dirichlet’s Theorem(s) on primes in arithmetic progressions – stated
but not proved.)
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Q3. (i) The class has seen two proofs:
(a) The alternating zeta function (Dirichlet eta function) η(σ) :=

∑∞
1 (−)n−1/nσ

converges for σ > 0 by the Alternating Series Test. So the half-plane of con-
vergence of the Dirichlet series is σ > 0. As η(s) =

∑
odd 1/n

s−∑
even 1/n

s =∑
o −

∑
e and ζ(s) =

∑
o +

∑
e, subtraction gives η(s) − ζ(s) = −2

∑
e =

−2
∑∞

1 1/(2n)s = −2.2−sζ(s): ζ(s) = η(s)/(1−21−s) = η(s)/(1−e−(1−s) log 2).
As η(1) = log 2 from Abel’s continuity theorem, this gives the analytic con-
tinuation of ζ to σ > 0, where it has a simple pole at 1 of residue 1.
(The other zeros of 1− 21−s, at s = 1 + 2πni/ log 2 for n a non-zero integer,
are cancelled by zeros of η, but this is not asked.)
(b) Euler’s summation formula for f(x) = 1/xs gives (as

∑∞
1 1/ns = ζ(s)

and
∫∞
1 dx/xs = 1/(s− 1))

ζ(s) =
1

s− 1
+ 1− s

∫ ∞

1

x− [x]

xs+1
dx,

and the integral is holomorphic for σ > 0. [10]
(ii) The class has seen four proofs: (i) using Complex Analysis to sum the
series (M2PM3); (ii) from the product for sine (M2PM3); (iii) by calculus
(LeVeque I, Ex. 6 p.122; Problems); (iv) by Fourier series (Problems), below.

Write an for the Fourier cosine coefficients of |x| on [−π, π] (|.| is even, so
we do not need sine terms). Then

1

2
a0 =

1

2
.
1

π

∫ π

−π
|x|dx =

1

π

∫ π

0
xdx =

1

π
[
1

2
x2]π0 =

π

2
,

an =
1

π

∫ π

−π
|x| cos nxdx =

2

π

∫ π

0
x cosnxdx =

2

nπ

∫ π

0
xd sinnx

=
2[x sinnx]π0

nπ
− 2

nπ

∫ π

0
sinnxdx =

2

n2π
[cosnx]π0 =

2(cosnπ − 1)

n2π

=
2((−1)n − 1)

n2π
= − 4

πn2

if n is odd, 0 if n ̸= 0 is even. So

|x| = π

2
− 4

π

∞∑
m=1

cos(2m− 1)x

(2m− 1)2
.

Putting x = 0 gives 0 = π
2
− 4

π

∑
odd 1/n

2:
∑

odd = π2/8. But ζ(2) =∑∞
1 1/n2 =

∑
odd+

∑
even =

∑
odd+

1
4
ζ(2): 3

4
ζ(2) = π2/8, ζ(2) = π2/6. [10]

Seen: (i) (lectures), (ii) (problems).
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Q4. (i) The Dirichlet convolution (a ∗ b)(n) := ∑
d|n a(d)b(n/d) corresponds

to multiplication of the Dirichlet series for a and b. In the case of u, where
u(n) := 1 for all n = 1, 2, . . ., the Dirichlet series is ζ(s) :=

∑∞
n=1 1/n

s, by
definition. Since

(u ∗ u)(n) =
∑
d|n

u(d)u(n/d) =
∑
d|n

1 = d(n),

this shows that the divisor function d has Dirichlet series ζ(s)2. [5]

(ii) Theorem. If dn is the number of divisors of n,∑
n≤x

dn = x log x+ (2γ − 1)x+O(
√
x).

Proof. Take an = bn = 1 (so (a ∗ b)n = dn, by (i)), y =
√
x: as A(x) =

B(x) = [x], Dirichlet’s Hyperbola Identity gives∑
n≤x

dn =
∑
j≤

√
x

[x/j] +
∑

k≤
√
x

[x/k]− [
√
x][

√
x] = 2

∑
j≤

√
x

[x/j]− [
√
x][

√
x]. [5]

In each [.] on RHS, write [.] = .− {.}. Each fractional part {.} ∈ [0, 1), so∑
n≤x

dn = 2
∑
j≤

√
x

x/j +O(
√
x)− x+O(

√
x),

as (
√
x+O(1))2 = x+O(

√
x). But (as in Lecture 3, Ch. I. §4, The Integral

Test and Euler’s constant),

∑
j≤

√
x
1/j = log

√
x+ γ +O(1/

√
x) =

1

2
log x+ γ +O(1/

√
x).

So (as in Lecture 15, II.9)∑
n≤x

dn = 2x(log
√
x+γ+O(1/

√
x))−x+O(

√
x) = x log x+(2γ−1)x+O(

√
x).

[10]
Seen (lectures).

N. H. Bingham
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