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Now use the Integral Test argument (1.4) to estimate S(z). As
/lmlogtdt =zlogr —x+1
(integrate by parts), this gives
S(z) =zlogx —x + b(z), |b(x)| <logx + 1.

Now logz + 1 < z for > 1 (integrate 1/z < 1 from 1 to z). So [b(z)| < z.
So
$Zn<xA(n)/n = S(x) + a(z) = xlogxr — x + a(z) + b(x).

But 0 < a(x) <2z, |b(z)| < z, so |a(x) —x + b(z)] < 2z. //

Cor. i
/1 wt(;)dtzlogx—i-O(l) (x >1).

Proof. By Abel summation (1.3),

anx/\(n)/n = w;x) + /196 wt(;) dt.

But ¢(x)/z is bounded (from Chebyshev’s #-function: II1.2), so this follows
from the Theorem. //

The next result shows that we can neglect the powers of primes in the
Theorem (at the cost of losing the bound 2): powers of primes become sparse,
so this is not too surprising.

Theorem (Mertens’ First Theorem: F. MERTENS (1840-1927) in 1874,
HW Th. 425).

S _logp/p=logz+0(1)  @>1)  (0()] <4).
Proof. As A(n) =logp when n = p™,

11
0<> _Am)/n—>" _logp/p<y’ 1ng(]§ o )
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Summing the geometric series, the RHS is
p w logn
< —o
Zpﬁﬂﬁp(p -1~ Z”ZQH(H —-1)

The series converges, to sum < 2 (check). The result then follows from the
Theorem above. //

Theorem (Mertens’ Second theorem; HW Th. 427).
Zpgxl/pzloglogx+01+0(1/1ogx) (x > 2),

for some constant Cf.

Proof (Compare 3, <, 1/n =logx + v+ o(1), 1.4). We use Abel summation,
with

a(n) :=logn/n (n prime), 0 otherwise, Az) == an@n'
By Mertens’ First Theorem, )
A(z) =logz + r(x), ()] < ¢ (x > 1),
a(l) =0, and

Zpﬁxl/p - Z a(n> ’

2sn=z]ogn
By Abel summation, this gives

> /= Alz) +/; AW gy — 1+ r(z) +/; at + I(z),

~logx t log®t log x tlogt

I(x) = /x rt) dt

2 t log?t

where

e ]
/ dt =loglogx — loglog 2,
2 tlogt

— < 0 as =——(—).
2t log’t ’ t log*t dt \logt
So I(x) — I, finite, as © — oo, and
oo dt Co
I(x) =T — s(x), < / - QO
@) =1=sta), sl <o [ o =

This gives the result with Cy := 1 —loglog2+ 1. //




