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Lecture 18. 21.2.2013

Cor. 4. ¢Y(z) <2z (z > 1).
Proof (sketch — see J p.77 for details).
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Powers of primes. Write 7* for the prime-power counting function,
m*(x) := X m<, 1. Then as above, we find

™(x) = 7(2) + 7(vx) + ... + w(z¥™),

with m the largest integer with 2™ < x, and

7(2) - pi(z) < 120vT/logz (x> 2),
with C' s.t. w(x) < Cz/logx (x > 2). For details, see [J] p.78-79.

Chebyshev’s Lower Estimates.
Write v :=e; — 2ey: v(1) =1, v(2) = =2, v(n) =0 for n > 2. Then

(usv)(z) => v(i)1=1 (nodd :i=1only), —1 (neven :i=1,2).
Let E(x) := > ,<,(u*v)(n). Then E(x) = 1if [x] is odd, 0 if [x] is even.
LEMMA 1.

SAG)E(x/j) =D logk—2 > logk (z>2).

i<z k<zx k<z/2
Proof. By the Lemma of I1.3 (sum of a convolution),

STAGE(/j) = D [Ax(uxv)]()) (Lemma: E sum-function of u * v)

Jjlz Jjlz

= > (txv)()) (Axv=1)

j<lx

= > v(j) D logk (¢ = log; Lemma again)

j<z k<z/j

= Ylogk—2 3 logk (z>2). //

k<x k<z/2
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LEMMA 2.
2
¥(2n) > log< n)
n

Proof. Take x = 2n in the Lemma, and let S be the sum on the left. As each
E() <1,
S< Y A =1(2n).
j<2n

But

2n n
Y logk—2 3 logk= 3 logk—3 log k—i—log((n +Dn+2)... (2”)) -
k<z k<z/2 k=n+1 k=1 L2....n
THEOREM 3 (Chebyshev’s Lower Estimates). For € > 0 and x suffi-
ciently large,

(i) () > (log2 — )z

(i) 6(x) > (log2 — )z

(iii) 7(z) > (log2 — €)li(x).

Proof. (i) Let N := (%:L) as above. This is the largest of the 2n + 1 terms in
the binomial expansion of (1+1)?" (by Pascal’s triangle), so 2** < (2n+1)N.
So by the Lemma above,

¥(2n) >log N > 2nlog2 — log(2n + 1).
Given z, take n with 2n < x < 2n + 2. Then by above
U(x) > (x — 2)log2 — log(z + 1),
giving (i).
(ii) This follows from (i) as (¢(x) — 0(x))/x — 0 (Cor. above).
(iii) This follows from (ii) by the first Theorem of this section. //

Cor. 5. 7(x) > (log2 — €)z/log x.
Proof. ¢¥(x) < m(x)logz (first Prop. of this section and (i). //

In 1849-51 Chebyshev proved that if m(x)/li(z) has a limit, it must be
1 (L, 11-29, esp. 16). We omit the proof. In 1851, Chebyshev also proved

Bertrand’s postulate of 1845: for any n > 2 there is a prime p between n and
2n; see Problems and Solutions 8 for Erdos’ elementary proof of 1932.



