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We call x a half-integer if it has the form x = n+ 1
2
.

Lemma 1. For x > 1 a half-integer,∑
1
2
x<n< 3

2
x

| log(n/x)|−1 = O(x log x).

Proof. In the summation, | log(n/x)| >> |1− n/x| = |x− n|/x. So∑
1
2
x<n< 3

2
x

| log(n/x)|−1 << x
∑

1
2
x<n< 3

2
x

|x−n|−1 << x
∑
n≤x

1/n = O(x log x). //

Lemma 2. If x > 1 is a half-integer, 2 ≤ T ≤ x and c := 1 + 1/ log x,

ψ(x) :=
∑
n≤x

Λ(n) =
1

2πi

∫ c+iT

c−iT

−ζ
′(s)

ζ(s)
.
xs

s
ds+O

(xlog2x
T

)
.

Proof. Apply Perron’s formula termwise to −ζ ′(s)/ζ(s) =
∑∞

1 Λ(n)/ns:

1

2πi

∫ c+iT

c−iT

−ζ
′(s)

ζ(s)
.
xs

s
ds =

∞∑
1

Λ(n).
1

2πi

∫ c+iT

c−iT

(x/n)s

s
ds

=
∑

1≤n≤x

Λ(n) +O(
1

T

∞∑
1

Λ(n)(x/n)c(log |x/n|)−1) =
∑
n≤x

Λ(n) + E,

say. As c = 1 + 1/ log x = 1 + o(1), xc = O(x). So

E << (x/T )
∞∑
1

Λ(n)n−c| log(x/n)|−1. (E)

(i) For n /∈ (1
2
x, 3

2
x), the log term is bounded, so these terms contribute

<<
∞∑
1

Λ(n)/nc = −ζ ′(c)/ζ(c).

As c := 1 + 1/ log x, log x = 1/(c − 1); as −ζ ′/ζ has a simple pole at 1 of
residue 1, −ζ ′(s)/ζ(s) ∼ 1/(s − 1) near 1 (III.3 L19), so the RHS above is:
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O(1/(c− 1)) = O(log x).
(ii) When n ∈ (1

2
x, 3

2
x), use Λ(n) << log n << log x and nc = exp{c log n} =

exp{(1 + 1/ log x) log n} ∼ exp{(1 + 1/ log x) log x} ∼ ex: Λ(n)/nc <<
log x/x. By Lemma 1, this sum contributes O(x log x. log x/x) = O(log2x).

So case (ii) dominates, and (E) gives E = O((x/T )log2x). //

The following result is known as the Riemann-von Mangoldt formula
(RvM) or the approximate explicit formula (AEF).

Theorem (Riemann-von Mangoldt formula). For 2 ≤ T ≤ x and x a
half-integer,

ψ(x) :=
∑
n≤x

Λ(n) = x−
∑
|ρ|≤T

xρ/ρ+O
(xlog2x

T

)
. (RvM)

Proof. Changing between T and U in the Proposition of III.9 does not affect
the error term. By Cor. 2 of III.9, the corresponding change in the sum is
O(x log T/T ), which can be absorbed into the error term. So we can assume
the conclusion of the Proposition, and write T for U for convenience:

ζ ′(s)/ζ(s) = O(log2T ) (s = σ + iT, −1 ≤ σ ≤ 2). (∗)

With c := 1 + 1/ log x as before, we evaluate

I1 :=
1

2πi

∫ c+iT

c−iT

−ζ
′(s)

ζ(s)
.
xs

s
ds

by integrating round the contour C = C1∪. . .∪C4, where C1 = [c−iT, c+iT ],
C2 = [c+ iT,−1+ iT ], C3 = [−1+ iT,−1− iT ], C4 = [−1− iT, c− iT ]. Write
I :=

∫
C
, Ij :=

∫
Cj
. Inside C, the integrand above has:

(i) a pole at s = 1, of residue x (−ζ ′/ζ has a simple pole of residue 1);
(NB: this x is the leading term, in PNT in the form ψ(x) ∼ x; everything
else goes into the remainder term);
(ii) a pole at s = 0 (of residue ζ ′(0)/ζ(0), constant, O(1));
(iii) poles at the non-trivial zeros ρ with |ρ| < T , of residue −xρ/ρ, by the
partial fraction expansion of III.9.
So by Cauchy’s residue theorem,

I = I1 + . . .+ I4 = x+O(1)−
∑
|ρ|<T

xρ

ρ
. (∗∗)
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