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11. The zero-free region.
We give the classical zero-free region of Hadamard and de la Vallée
Poussin. We follow Titchmarsh [T], Th. 3.8.

Theorem. For some absolute constant ¢ > 0, {(s) has no zeros in the region

C
>1—— t>ty). ZFR
) (ZFR)

Proof. For o > 1,
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So as in II1.4, for o > 1 and v real (w.l.o.g. > 2),
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as {...} > 0 by II1.4. As ¢ has a simple pole at 1 of residue 1,

_ (o) 1
) < 1 + O(1).

By the partial fraction expansion (x) and Stirling’s formula,
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Each term in the last sum is positive (as % <pB<1l,0>1). So
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Also, taking s = o + iy with p = 8 + iy gives
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discarding every term (as above) except 1/(s — p).
Combining,
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(as v — 00). So for each ty we can find C' > 0 so large that
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Solving for 3, this says
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Here 0 > 1 is free. Choose 0 —1 = 1/(C'log~):
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2. Error terms and zero-free regions of (.

Landau (Handbuch, §42) shows that from de la Vallée Poussin’s 1896 zero-
free region o > 1—a/logt (t > to) follows m(s)—li(z) = O(x exp{—a/logr}),
for all v < y/a. In the other direction, P4l TURAN (1910-76) (1950; book
of 1984) showed that an error term O(x exp(—a(logx)®)) implies a zero-free
region o > 1 — c(log(2 + [t])) 172,

Taking b = 2/3, ¢ = 1/3 corresponds to the best results known (I. M.
VINOGRADOV (1891-1983) in 1958, N. M. KOROBOV in 1958):

Y(z) — x = Oz exp{—C(log z)**/(loglog z)/*}  (C > 0),
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