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Dirichlet Test for Convergence: If an have bounded partial sums An =∑n
1 ar, and vn → 0, then

∑
anvn converges.

Abel’s Test for Convergence. If
∑

an convergent and vn is real, mono-
tonic and convergent, then

∑
anvn converges.

For proofs, see an Analysis textbook, or the Handout.

Abel’s Summation Formula. If y < x and f has a continuous derivative
on [y, x] (i.e. f ∈ C1[y, x]), then

∑
y<r≤x

arfr = A(x)f(x)− A(y)f(y)−
x∫

y

A(t)f ′(t)dt.

Proof. Let m = [y], x = [n], with [·] the integer part. Then
∑

y<r≤n arfr =∑n
m+1 arfr. As A(x) :=

∑
r≤x ar, A(t) = A(r) for r ≤ t < r + 1. So

n−1∑
m+1

Ar(fr − fr+1) = −
n−1∑
m+1

A(r)

r+1∫
r

f ′(t)dt

= −
n−1∑
m+1

r+1∫
r

A(t)f ′(t)dt as A is constant on (r, r + 1)

= −
∫ n

m+1
A(t)f ′(t)dt.

Similarly, for n ≤ t ≤ x A(t) = A(n), so

A(x)f(x)− A(n)f(n) = A(n)[f(x)− f(n)] =
∫ x

n
A(t)f ′(t)dt,

and for m ≤ t ≤ y A(t) = A(m), so

A(m)f(m+ 1)− A(y)f(y) = A(m)[f(m+ 1)− f(y)] =
∫ m+1

y
A(t)f ′(t)dt.

Finally, substituting into (∗) in the proof of Abel’s Lemma for Anfn−Amfm+1

gives the result. //
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§4. The Integral Test and Euler’s Constant

The Integral Test: If f > 0 and is monotonic decreasing on [1,∞], then:

(i)
∞∫
1
f(x)dx and

∞∑
1
f(n) converge or diverge together;

(ii)
n∑
1
f(r)−

∫ n
1 f(x)dx → l ∈ [0, f(1)] as n → ∞.

Proof. (i) As f is monotonic, it is integrable on each [1, x]. If n− 1 ≤ x ≤ n,

f(n− 1) ≥ f(x) ≥ f(n).

Integrate from n− 1 to n:

f(n− 1) ≥
∫ n

n−1
f(x)dx ≥ f(n).

Sum from 1 to n− 1:
n−1∑
1

f(r) ≥
∫ n

1
f ≥

n∑
2

f(r) :
n∑
1

f(r)−f(n) ≥
∫ n

1
f ≥

n∑
1

f(r)−f(1). (∗)

If
∑∞

1 f(r) < ∞, the LH inequality gives
∞∫
1
f(x)dx < ∞.

If
∫∞
1 f(x)dx < ∞, the RH inequality gives

∑∞
1 f(r) < ∞. For (ii),

f(1) ≥ ϕ(n) :=
n∑
1

f(r)−
∫ n

1
f ≥ f(n) ≥ 0.

Then by (∗),

ϕ(n)− ϕ(n− 1) = f(n)−
∫ n

n−1
f(x)dx ≤ 0, 0 ≤ ϕ(n) ≤ f(1),

So ϕ(n) is bounded and decreasing, so it is convergent: ϕ(n) ↓ l ∈ [0, f(1)]. //

Taking f(x) ≡ 1/x, the limit is defined as Euler’s constant, γ. Then [J]:

Corollary (Euler’s Constant).
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0 <
N∑
1

1

n
− logN < 1;

N∑
1

1

n
= logN + γ +

1

2N
+O(

1

2N
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