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12. PNT with Remainder.

Theorem (PNT with Remainder: Hadamard, de la Vallée Poussin).
For some absolute constant c > 0,

ψ(x) = x+O(x exp{−c
√

log x}).

Proof. We use (RvM) (III.10) and (ZFR) (III.11). For |ρ| ≤ T , we have
β ≤ 1− c/ log T . So

|xρ| = |e(β+iγ) log x| = eβ log x

≤ exp{(1− c/ log T ) log x}
= x exp{−c log x/ log T}.

As ζ(0) = −1
2
, the zeros of ζ are bounded away from 0, so 1/ρ is bounded.

So
|xρ/ρ| = O(x exp{−c log x/ log T}).

From Cor. 3 of III.9, N(T ) = O(T log T ). So

|
∑
|ρ|≤T

xρ/ρ| = O(x.T log T. exp{−c log x/ log T}).

Take
T = exp{

√
(1/2)c log x}.

Then
T log T =

√
(1/2)c log x. exp{

√
(1/2)c log x},

exp{−c log x/ log T} = exp{−c log x/
√
(1/2)c log x} = exp{−

√
2c log x}.

Combining, the error term is

<< x.
√
(1/2)c log x. exp{

√
(1/2)c log x}. exp{−

√
2c log x}.

The last two terms are << exp{−c1 log x} for some c1 > 0. As exp{a
√
log x}

increases (much!) faster than any power of log x, the RHS is

<< x. exp{−c2
√
log x}

for some constant c2 > 0. Similarly, the other error term in (RvM), O(xlog2x/T ) <<
xlog2x exp{−

√
(1/2)c log x} is also of this form. Combining, so is ψ(x)− x.
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Note. 1. From the Taylor expansion for exp, for α ∈ (0, 1) exp{(log x)α}
grows (much!) faster than any power of log. Also, for any λ > 0, exp{(log(λx))α} =
exp{(log λ + log x)α} ∼ exp{(log x)α} (check) (functions with this property
are called slowly varying). By contrast, exp{(log x)α} grows (much!) more
slowly than exp{log x} = x. These slowly varying functions provide a con-
venient scale of growth, by which we can judge the comparative precision of
different forms of PNT with remainder.
2. The classical remainder (H-dlVP) of 1896 has α = 1

2
. It has only been

improved since to log3/5/log log1/5 = log3/5−ϵ by Vinogradov and Korobov in
1958, and not at all since then. So, roughly, one can get α = 3/5 − ϵ by
analytic methods.
3. The best that has been done so far by elementary methods (not using
Complex Analysis – see III.1) is α = 1/6− ϵ (Lavrik and Sobirov, 1973).
4. By Turán’s method (above), this still yields a non-trivial zero-free region
(though not, of course, as good as the classical one or the best-known one).

Primes in an Arithmetic Progression.
We consider primes in an arithmetic progression (AP, with first term h

and common difference k – we may take h, k coprime). Dirichlet’s theorem
(on primes in an AP) states that there are infinitely many primes in any
AP. This is Th. 15* in HW (where the proof is described as too difficult to
include!) – though it is a very special case of the following, which says that
there are ”as many primes in an AP as there ought to be”:
Theorem (Dirichlet). For h, k ∈ N, (h, k) = 1, x > 1,

π(x;h, k) :=
∑

p≤x:p≡h (mod k)

∼ li(x)/ϕ(k),

with ϕ the Euler totient function.
For proof, see e.g. J Ch. 4, R Ch. 13; this depends on Dirichlet L-

functions (analogues of ζ). Error terms are known. But all this holds uni-
formly over many APs simultaneously – e.g., in h, k ≤ (log x)u. The unifor-
mity plus the classical error term is the Siegel-Walfisz theorem (C. L. SIEGEL
in 1935, A. WALFISZ in 1936). This can be strengthened further to the
Bombieri-Vinogradov theorem (E. BOMBIERI 1965; A. I. VINOGRADOV
1965; this depends on the large sieve – K. ROTH, 1965). The theorem says
that the strengthening obtainable here by assuming (RH) actually holds ‘on
average’.
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