
m3pm16l6.tex
Lecture 6. 24.1.2013

II. ARITHMETIC FUNCTIONS and DIRICHLET SERIES

§1. Dirichlet Series
Defn. An arithmetic function a 7→ an or a(n) is a map from N to R or C.
Notation: For s ∈ C we write s = σ + it.
The Dirichlet series of a is the function

∑∞
n=1 an/n

s.
While the region of convergence of a power series is a disc where it is also

absolutely convergent, the regions of convergence and absolute convergence
of a Dirichlet series are half-planes, possibly different.

Theorem (Half Plane of Absolute Convergence).
(i) If

∑∞
1 an/n

s is absolutely convergent for s = α, real, it is also convergent
for s = σ + it, σ ≥ α.
(ii) There exists σa, the abscissa of absolute convergence, such that

∑∞
1 an/n

s

is absolutely convergent for σ > σa, and not absolutely convergent for σ < σa.

Proof. (i) ns = nσ+it = nσeit logn, so |ns| = nσ. So for σ ≥ α, |an/ns| =
|an|/nσ ≤ |an|/nα, and we know this converges absolutely.
(ii) Let

E := {α ∈ R :
∑

|an|/nα < ∞}, σa = inf{E}.

In (i), given α ∈ E, so E ̸= ϕ. If σ > σa, ∃α ∈ E with α < σ, and then
by (i), σ ∈ E, so

∑
an/n

σ is absolutely convergent. Clearly, if σ < σa, then
σ /∈ E, as σa is an infimum of the set. (Observe that σa is a Dedekind cut.) //

Abel Summation Formula for Dirichlet Series

Again, A(x) :=
∑

n≤x an. Abel’s summation formula (I.3) for f(x) =
1/xs, f ′(x) = −s/x1+s gives∑

n≤x

an/n
s =

A(x)

xs
+ s

∫ x

1

A(x)

x1+s
dx. (∗)

So if s ̸= 0 and A(n)/xs → 0 at∞, if one of
∑∞

1 an/n
s and s

∫∞
1

A(x)/x1+sdx

1



converges, both do to the same value (by the Integral Test). Similarly,∑
n>x

an
ns

= −A(x)

xs
+ s

∫ ∞

x

A(x)

x1+s
dx. (∗∗)

We call
∫∞
1

f(x)/x1+sdx a Dirichlet integral (essentially equivalent to Dirich-
let series).

Proposition. If A(x) :=
∑

n≤x an has |A(x)| ≤ Mxα(n ≥ 1, α ≥ 0), the
Dirichlet series F (s) :=

∑∞
n=1 an/n

s converges for s = σ + it, σ > α. Write
Fx(s) :=

∑
n≤x an/n

s. Then

|F (s)| ≤ M |s|
σ − α

; |F (s)− Fx(s)| ≤
M

xσ−α

(
|s|

σ − α
+ 1

)
.

Proof. On the RHS of (∗), |A(x)/xs| ≤ M/xσ−α. Then

|s|
∫ x

1

A(x)

x1+s
dx ≤ |s|

∫ ∞

1

M

xσ−α+1
dx =

M |s|
σ − α

(
1− 1

xσ−α

)
≤ M |s|

σ − α
.

Letting x → ∞ in (∗) gives |F (s)| ≤ M |s|/(σ − α). Similarly for (∗∗). //

Theorem (Half-plane of convergence).
(i) If

∑∞
1 an/n

α converges for some real α, the series
∑∞

1 an/n
s converges

for s = σ + it, σ > α.
(ii) Consequently, there exists σc, the abscissa of convergence (possibly ±∞)
such that

∑∞
1 an/n

s converges for σ > σc and diverges for σ < σc.
(iii) σc ≤ σa ≤ σc + 1.

Proof.(i) Write bn := an/n
α, B(x) :=

∑
n≤x bn. Then

∑
bn converges, so

is bounded: say |B(x)| ≤ M . Take α = 0 in the Prop. above:
∑

bn/n
s

converges (Res > 0). So
∑

an/n
s =

∑
bn/n

s−α converges (σ > α).
(ii) This follows as with σa above.
(iii) σc ≤ σa as absolute convergence implies convergence (so the half-plane
of absolute convergence ⊂ the half-plane of convergence).

|an/ns| = |bn/ns−α| ≤ M/nσ−α.

So for σ > α+ 1,
∑

an/n
s is absolutely convergent by the Comparison Test

(
∑

1/nc converges for c > 1). So σa ≤ α+ 1.
This holds for every α > σc. So σa ≤ σc + 1. //
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