m3pm16l6.tex Lecture 6. 24.1.2013

II. ARITHMETIC FUNCTIONS and DIRICHLET SERIES

§1. Dirichlet Series

Defn. An arithmetic function $a \mapsto a_n$ or a(n) is a map from \mathbb{N} to \mathbb{R} or \mathbb{C} . Notation: For $s \in \mathbb{C}$ we write $s = \sigma + it$.

The Dirichlet series of a is the function $\sum_{n=1}^{\infty} a_n/n^s$.

While the region of convergence of a power series is a *disc* where it is also *absolutely convergent*, the regions of convergence and absolute convergence of a Dirichlet series are *half-planes*, possibly different.

Theorem (Half Plane of Absolute Convergence).

(i) If $\sum_{1}^{\infty} a_n/n^s$ is absolutely convergent for $s = \alpha$, real, it is also convergent for $s = \sigma + it, \sigma \ge \alpha$.

(ii) There exists σ_a , the *abscissa of absolute convergence*, such that $\sum_{1}^{\infty} a_n/n^s$ is absolutely convergent for $\sigma > \sigma_a$, and not absolutely convergent for $\sigma < \sigma_a$.

Proof. (i) $n^s = n^{\sigma+it} = n^{\sigma} e^{it \log n}$, so $|n^s| = n^{\sigma}$. So for $\sigma \ge \alpha$, $|a_n/n^s| = |a_n|/n^{\sigma} \le |a_n|/n^{\alpha}$, and we know this converges absolutely. (ii) Let

$$E := \{ \alpha \in \mathbb{R} : \sum |a_n| / n^\alpha < \infty \}, \qquad \sigma_a = \inf\{E\}.$$

In (i), given $\alpha \in E$, so $E \neq \phi$. If $\sigma > \sigma_a$, $\exists \alpha \in E$ with $\alpha < \sigma$, and then by (i), $\sigma \in E$, so $\sum a_n/n^{\sigma}$ is absolutely convergent. Clearly, if $\sigma < \sigma_a$, then $\sigma \notin E$, as σ_a is an infimum of the set. (Observe that σ_a is a Dedekind cut.) //

Abel Summation Formula for Dirichlet Series

Again, $A(x) := \sum_{n \le x} a_n$. Abel's summation formula (I.3) for $f(x) = 1/x^s, f'(x) = -s/x^{1+s}$ gives

$$\sum_{n \le x} a_n / n^s = \frac{A(x)}{x^s} + s \int_1^x \frac{A(x)}{x^{1+s}} dx.$$
 (*)

So if $s \neq 0$ and $A(n)/x^s \to 0$ at ∞ , if one of $\sum_{1}^{\infty} a_n/n^s$ and $s \int_1^{\infty} A(x)/x^{1+s} dx$

converges, both do to the same value (by the Integral Test). Similarly,

$$\sum_{n>x} \frac{a_n}{n^s} = -\frac{A(x)}{x^s} + s \int_x^\infty \frac{A(x)}{x^{1+s}} dx.$$
 (**)

We call $\int_1^{\infty} f(x)/x^{1+s} dx$ a *Dirichlet integral* (essentially equivalent to Dirichlet series).

Proposition. If $A(x) := \sum_{n \le x} a_n$ has $|A(x)| \le Mx^{\alpha} (n \ge 1, \alpha \ge 0)$, the Dirichlet series $F(s) := \sum_{n=1}^{\infty} a_n/n^s$ converges for $s = \sigma + it, \sigma > \alpha$. Write $F_x(s) := \sum_{n \le x} a_n/n^s$. Then

$$|F(s)| \le \frac{M|s|}{\sigma - \alpha};$$
 $|F(s) - F_x(s)| \le \frac{M}{x^{\sigma - \alpha}} \left(\frac{|s|}{\sigma - \alpha} + 1\right).$

Proof. On the RHS of (*), $|A(x)/x^s| \leq M/x^{\sigma-\alpha}$. Then

$$|s| \int_1^x \frac{A(x)}{x^{1+s}} dx \le |s| \int_1^\infty \frac{M}{x^{\sigma-\alpha+1}} dx = \frac{M|s|}{\sigma-\alpha} \left(1 - \frac{1}{x^{\sigma-\alpha}}\right) \le \frac{M|s|}{\sigma-\alpha}.$$

Letting $x \to \infty$ in (*) gives $|F(s)| \le M|s|/(\sigma - \alpha)$. Similarly for (**). //

Theorem (Half-plane of convergence).

(i) If $\sum_{1}^{\infty} a_n/n^{\alpha}$ converges for some real α , the series $\sum_{1}^{\infty} a_n/n^s$ converges for $s = \sigma + it, \sigma > \alpha$.

(ii) Consequently, there exists σ_c , the *abscissa of convergence* (possibly $\pm \infty$) such that $\sum_{1}^{\infty} a_n/n^s$ converges for $\sigma > \sigma_c$ and diverges for $\sigma < \sigma_c$. (iii) $\sigma_c \leq \sigma_a \leq \sigma_c + 1$.

Proof.(i) Write $b_n := a_n/n^{\alpha}$, $B(x) := \sum_{n \le x} b_n$. Then $\sum b_n$ converges, so is bounded: say $|B(x)| \le M$. Take $\alpha = 0$ in the Prop. above: $\sum b_n/n^s$ converges (Res > 0). So $\sum a_n/n^s = \sum b_n/n^{s-\alpha}$ converges ($\sigma > \alpha$). (ii) This follows as with σ_a above.

(iii) $\sigma_c \leq \sigma_a$ as absolute convergence implies convergence (so the half-plane of absolute convergence \subset the half-plane of convergence).

$$|a_n/n^s| = |b_n/n^{s-\alpha}| \le M/n^{\sigma-\alpha}.$$

So for $\sigma > \alpha + 1$, $\sum a_n/n^s$ is absolutely convergent by the Comparison Test $(\sum 1/n^c \text{ converges for } c > 1)$. So $\sigma_a \leq \alpha + 1$. This holds for every $\alpha > \sigma_c$. So $\sigma_a \leq \sigma_c + 1$. //