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M3PM16/M4PM16 SOLUTIONS 3. 9.2.2012

Q1 (HW

p1 . . . pn ≤ 21+2+...+2n−1

= 22
n−1.

Following Euclid’s proof, consider N := p1 . . . pn + 1.
This is not divisible by any of p1, . . . , pn. So if p is any prime in its prime-
power factorization (FTA), p|N , so p ≤ N . Also pn+1 ≤ p (as by above p is
not one of the first n primes). So

pn+1 ≤ p ≤ N = p1 . . . pn + 1 ≤ 22
n−1 + 1 ≤ 22

n

.

This completes the induction, proving pn ≤ 22
n−1

for all n.
(ii) Given x, let n be the integer with 22

n−1 ≤ x < 2n. Then

π(22
n−1

) ≤ π(x) < π(22
n

).

π(x) :=
∑
p≤x

1 =
∑

k:pk≤x

1 ≥
∑

k:22
k−1≤x

1,

by (i). But 22
k−1 ≤ x iff 2k−1 log 2 ≤ log x, 2k−1 ≤ log x/ log 2,

iff (k−1) log 2 ≤ log log x−log log 2, iff k ≤ (log log x)/(log 2)−(log log 2)/(log 2)+
1. So

π(x) ≥ 1− log log 2

log 2
+

log log x

log 2
>

log log x

log 2
,

as 1 − (log log 2)/(log 2) > 1 > 0 (see HW Th. 10 p.12 for the slightly less
precise π(x) ≥ log log x).

Q2 (HW §2.6, Th. 20, p.16-7). (i) If 2, 3, . . . , pj are the first j primes and
N is the number of n ≤ x not divisible by any p > pj: each such n is of the
form

n = n2
1m, m = pc11 . . . p

cj
j , ci = 0 or 1

(any even powers of pi being absorbed in n2
1). There are 2j choices of the

powers ci, so #m = 2j. Also n1 ≤
√
n ≤

√
x, so #n1 ≤

√
x. Combining,

N(x) = #n ≤ #m.#n1 = 2j
√
x : N(x) ≤ 2j

√
x.
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(ii) If
∑

1/p < ∞: choose j so large that
∑∞

j+1 1/pk < 1/2. The number of
n ≤ x divisible by p is [x/p] ≤ x/p. So the number of n ≤ x divisible by at
least one of the pk (k ≥ j + 1) is ≤ x

∑∞
j+1 1/pk < x/2. Combining this with

(i):
1

2
x < N(x) ≤ 2j

√
x :

√
x ≤ 2j+1 : x ≤ 22j+2.

This is false for large enough x (j is fixed). This contradiction gives
∑

1/p
diverges.
(iii) Take j = π(x). So pj+1 > x, and N(x) = x. Then (i) gives

x = N(x) ≤ 2π(x)
√
x : 2π(x) ≥

√
x.

Take logs:

π(x) ≥ log x

2 log 2
.

(iv) Taking x = pn: π(x) = n: 2n ≥ √
pn, so pn ≤ 4n.

Q3 (HW Th. 5 p.5). If 2, 3, . . . , p are all the primes up to p, then all numbers
n up to p are divisible by at least one of these primes, p′ say, by FTA:

p′|n, n = p′r′,

say. So if q := 2.3.5 . . . p =
∏
p′, then all the p− 1 numbers q + 2, q + 3, q +

4, . . . , q + p are composite: for each is of the form

q + n = q + p′r′ = p′.
∏

p′′ + p′r′ = p′(r′ +
∏

p′′),

where the product is over the primes other than p in the prime-power fac-
torisation of n (counted with multiplicity), and any repetitions of p. So this
string of p − 1 consecutive numbers forms (part of) a gap between primes.
There are arbitrarily large p (Euclid), so arbitrarily long gaps between primes.
Q4 (HW, Th. 11 p.13). Again as in Euclid, write q := 22.3, . . . p − 1. Then
4|q, so q = 4n+ 3 for some n (residue 3 = −1 mod 4), and q is not divisible
by any of the primes up to p. It cannot be a product of primes of the form
4n+ 1, or it too would be of this form. So q is of the form 4n+ 3, and there
are infinitely may such q, one for each p.
Note. There are also infinitely many primes of the form 4n + 1, but this is
harder (HW, p.13). More is true: from Dirichlet’s PNT for primes in AP
(III.10.7), ‘half the primes are 4n+ 1, half are 4n+ 3’.
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