M3PM16/M4PM16 EXAMINATION 2014

Q1. Recall that Euler's totient function $\phi(n)$ is defined to be the number of positive integers $\leq n$ coprime to n. Show that (with $u(n) \equiv 1$, $I(n) \equiv n$ and μ the Möbius function):

(i)
$$\sum_{d|n} \phi(d) = n: \qquad \phi * u = I;$$

(ii)
$$\phi = I * \mu: \qquad \phi(n) = \sum_{d|n} \mu(d).n/d = n \sum_{d|n} \mu(d)/d;$$

- (iii) ϕ is multiplicative;
- (iv) ϕ has Dirichlet series

$$\sum_{1}^{\infty} \phi(n)/n^{s} = \zeta(s-1)/\zeta(s);$$

(v)
$$\phi(n) = n \ \Pi_{p|n} \left(1 - \frac{1}{p} \right).$$

(You may use without proof any standard facts about Dirichlet convolutions and series, but these should be clearly stated.)

- Q2. (i) State without proof Mertens' Second Theorem on sums of reciprocals of primes, $\sum_{p \leq x} 1/p$.
- (ii) Deduce the corresponding estimate for reciprocals of prime powers, $\sum_{p^n \leq x} 1/p^n$.

- Q3. (i) For the Riemann zeta function $\zeta(s) := \sum_{1}^{\infty} 1/n^{s}$ and the alternating zeta function $\eta(s) := \sum_{1}^{\infty} (-)^{n-1}/n^{s}$, state without proof the abscissae σ_{c} , σ_{a} of convergence and of absolute convergence.
- (ii) By using η , or otherwise, show how to continue ζ analytically to $\sigma := Re \ s > 0$.
- (iii) Show that η , ζ have no real zeros in (0,1).
- (iv) Show that ζ has a simple pole at 1 of residue 1. (You may quote that $\sum_{1}^{\infty}(-)^{n-1}/n=\log 2$.)
- (v) Given the functional equation for the Riemann zeta function in the form

$$\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s) = \pi^{-\frac{1}{2}(1-s)}\Gamma(\frac{1}{2}(1-s))\zeta(1-s),$$

show that $\zeta(0) = -\frac{1}{2}$ and $\zeta(-2n) = 0$ (n = 1, 2, ...).

- (vi) Given further that ζ does not vanish on the 1-line $\sigma=1$, show that all zeros of ζ other than these 'trivial zeros' -2n lie in the critical strip $0<\sigma<1$.
- Q4. Define ν by $\nu(n) := \mu(d)$ if $n = d^2$ is a square, 0 otherwise. Show that:
- (i) $|\mu| = \nu * u$;
- (ii) if Q(x) is the number of square-free natural numbers $n \le x$, $[x] = \sum_{m < \sqrt{x}} Q(x/m^2)$;
- (iii) $Q(x) = \sum_{m \le \sqrt{x}} \mu(m) [x/m^2];$

(iv)
$$Q(x) = \frac{6}{\pi^2} x + O(\sqrt{x})$$

(you may quote $\zeta(2) = \pi^2/6$).

N. H. Bingham