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M3PM16/M4PM16 EXAMINATION SOLUTIONS 2014

Q1 (HW §§5.5, 16.1,2, J, 68-9, A, §§2.3 - 2.5). (i) Using |.| for cardinality,
we partition the set S := {1, 2, . . . , n} as a disjoint union of the sets A(d)
containing those elements k of S whose gcd with n is d. So

∑n
1 |A(d)| = n.

But (k, n) = d iff k/d and n/d are coprime, and 0 < k ≤ n iff 0 < k/d ≤ n/d.
So if q := k/d, there is a one-one correspondence k ↔ q = k/d between
the elements of A(d) and the integers q with 0 < q ≤ n/d with q and n/d
coprime. The number of such q is ϕ(n/d) (definition of ϕ). So∑

d|n
ϕ(n/d) = n :

∑
d|n

ϕ(d) = n : I = ϕ ∗ u. [6]

(ii) Since µ and u are convolution inverses, this gives

I ∗ µ = ϕ ∗ u ∗ µ = ϕ : ϕ(n) =
∑
d|n

µ(d)I(n/d) =
∑
d|n

µ(d).n/d. [3]

(iii) Since µ and I are multiplicative, so is ϕ = µ ∗ I. [2]
(iv) Taking Dirichlet series, as µ(n), I(n) = n have Dirichlet series 1/ζ(s) =∑∞

1 µ(n)/ns, ζ(s−1) =
∑∞

1 n/ns =
∑∞

1 1/ns−1, this gives the Dirichlet series
of ϕ as

∞∑
1

ϕ(n)/ns = ζ(s− 1)/ζ(s). [4]

(v) Being multiplicative, ϕ is determined by its values on prime powers pc,
as prime powers of distinct primes are coprime. There are pc − 1 positive
integers < pc, of which the multiples of p are p, 2p, . . . , pc − p (so pc−1 − 1 of
these), and the rest are coprime to pc. So

ϕ(pc) = (pc − 1)− (pc−1 − 1) = pc − pc−1 = pc(1− 1

p
).

So if n =
∏
pc is the prime-power factorisation of n (FTA), (ii) gives

ϕ(n) =
∏

ϕ(pc) =
∏

pc
∏

(1− 1

p
) = n

∏
p|n

(1− 1

p
). // [5]
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Q2. (i) Mertens’ Second Theorem:
∑

p≤x 1/p = log log x + C1 + O(1/ log x)
for some constant C1. [3]
(ii) Mertens’ Second Theorem for prime powers:∑
pn≤x

1/pn = log log x+C2+O(1/ log x), C2 := C1+S, S :=
∑
p

1

p(p− 1)
.

Proof. Write q := pn for a generic prime power, and for primes p with p2 ≤ x,
let rp be the largest ‘relevant power’ (largest r with pr ≤ x). Then

∆ :=
∑
q≤x

1/q −
∑
p≤x

1/p =
∑

p≤
√
x

rp∑
r=2

1/pr.

But
∑∞

2 1/pr = 1/(p(p− 1)), summing the GP, so

∆ ≤
∑
p

1

p(p− 1)
= S

(above). With

S0 :=
∑

p≤
√
x

1

p(p− 1)
,

S − S0 =
∑

p>
√
x

<
∑

n>
√
x

1

n(n− 1)

=
1√
x

(
1

n(n− 1)
=

1

n− 1
− 1

n
, sum telescopes)

≤ 2/
√
x. [10]

As prp+1 ≥ x:∑
r>rp

1

pr
<

1

x
(1 +

1

p
+

1

p2
+ . . .) =

1

x(1− 1/p)
≤ 2/

√
x (p ≥ 2).

So (as π(x) :=
∑

p≤x 1 ≤ ∑
n≤x 1 ≤ x)

S0 −∆ =
∑

p≤
√
x

∑
r>rp

1/pr < π(
√
x).2/x ≤ 2/

√
x.

Combining, S −∆ ≤ 4/
√
x = O(1/ log x). [4]

So the difference ∆ in the sums here and in Mertens’ Second Theorem is
S+O(1/ log x), and the result follows from Mertens’ Second Theorem. // [3]
[Seen – Mock Exam 2012; similar to Mertens’ Second Theorem, lectures.]
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Q3. (i) For ζ, σc = σa = 1; for η, σa = 0, σa = 1. [2]
(ii) η(σ) :=

∑∞
n=1(−)n−1/nσ =

∑
odd 1/n

σ −∑
even 1/n

σ =
∑

o −
∑

e,
say. Now

∑
e =

∑∞
1 1/(2n)σ = 2−σ ∑∞

1 1/nσ = 2−σζ(σ). So

η(σ) =
∑
o

−
∑
e

=
∑
o

−2−σζ(σ), ζ(σ) =
∑
o

+
∑
e

=
∑
o

+2−σζ(σ).

Subtract: η(σ)− ζ(σ) = −2.2−σζ(σ) = −21−σζ(σ):

η(σ) = (1− 21−σ)ζ(σ) : ζ(σ) = (1− 21−σ)−1.
∑∞

1
(−)n−1/nσ. (∗)

Note that the series on RHS converges in σ > 0, by the Alternating Series
Test. Now let s be complex, and define

ζ(s) := η(s)/(1− 21−s) = (
∑∞

n=1
(−)n−1/ns)/(1− e(1−s) log 2). (∗∗)

As η(s) has σc = 0, the first factor on RHS is holomorphic in σ > 0 (the
second is holomorphic as 2−s = e−s log 2 is). So we may use (∗) to continue
ζ(s) analytically from σ > 1 to σ > 0. [6]
(iii)

∑
odd >

∑
even (compare corresponding terms). So η(σ) has no zeros

in σ ∈ (0, 1). So ζ(σ) has none either: any zeros of ζ in the critical strip
0 < σ < 1 are non-real. [2]
(iv)Near s = 1, 1 − 21−s = 1 − e(1−s) log 2 = (s − 1) log 2 + O((s − 1)2). As
η(1) = log 2, given, log 2 cancels in (∗∗) to give ζ(s) ∼ 1/(s − 1): ζ(s) is
holomorphic in Res > 0 except for a simple pole at 1 of residue 1. // [3]
(v) ζ(0) = −1

2
; ζ(−2n) = 0 (n = 1, 2, . . .).

Proof. Γ has a simple pole at 0 of residue 1; ζ has a simple pole at 1 of
residue 1. So near s = 0, (FE) and Γ(1

2
) =

√
π give

2

s
.ζ(s) ∼ 1√

π
.Γ(

1

2
).(−1

s
) = −1

s
: ζ(0) = −1

2
. [2]

The RHS of (FE) is holomorphic at s = 2n. The LHS contains a (simple)
pole from Γ(−1

2
s), so this must be cancelled by a (simple) zero of ζ: ζ(−2n) =

0. (The zeros of ζ at −2n are called the trivial zeros.) [2]
(vi) All zeros of ζ other than the trivial zeros lie in the critical strip 0 < σ < 1.
Proof. The RHS of (FE) is holomorphic in σ > 1, and non-zero there (there
are no zeros in σ > 1 by the Euler product, and none on the 1-line, given). So
the LHS of (FE) is holomorphic and non-zero in σ < 0. But the only poles
of Γ are 0,−1, . . . ,−n, . . .. So the only zeros of ζ in σ < 0 are the trivial
zeros that cancel these. The remaining zeros are in the critical strip. [3]
[Seen in lectures, except for (iii), unseen.]
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Q4. (i). With ν(n) := µ(d) if n = d2 is a square, 0 otherwise:
Given n, extract from n the product of its prime factors raised to their highest
even power. This is a square, m2 say, and then n = m2q, with q a product of
distinct primes (those occurring in n with odd multiplicity). So |µ|(q) = 1.
So |µ(n)| = e(m), since if m = 1, n = q, so |µ(n)| = |µ(q)| = 1, while if
m > 1, n has a square factor, so both sides are 0. But µ ∗ u = e, so

|µ(n)| = e(m) =
∑
d|m

µ(d) =
∑
d2|n

µ(d) (d|m iff d2|n)

=
∑
d2|n

ν(d2) (definition of ν)

=
∑
d|n

ν(d) (ν(d) = 0 if d is not a square).

So |µ| = ν ∗ u. Or: |µ| = µ2 = IQ has Dirichlet series ζ(s)/ζ(2s) (II.7 L11);
u has Dirichlet series ζ(s); ν has Dirichlet series 1/ζ(2s) (check). [6]
(ii) For integers n ≤ y2, let S(d) be the set of n with biggest square factor
d2. So S(1) is the set of square-free n ≤ y2. Then

|S(d)| = Q(y2/d2) :

for n ∈ S(d) iff n = d2m ≤ y2 with m square-free, i.e. m ≤ y2/d2 is square-
free, and there are Q(y2/d2) such m, so this many n = d2m.

As Q(x) = 0 for x < 1, Q(y2/d2) = 0 for d > y, i.e. S(d) is empty for
d > y. So as the S(d) form a partition of {n ≤ y2},

[y2] =
∑
d≤y

Q(y2/d2) : [x] =
∑

m≤
√
x

Q(x/m2). [6]

(iii) By Möbius inversion of (i), Q(x) =
∑

m≤
√
x µ(m)[x/m2]. [2]

(iv) Write [.] = .− {.} = .+O(1):

Q(y2) =
∑
d≤y

µ(d)(y2/d2 +O(1)) = y2
∞∑
d=1

µ(d)/d2 +O(y2
∑
d>y

1/d2) +O(y),

as |µ| ≤ 1. For large y,
∑

d>y 1/d
2 ∼

∫∞
y dx/x2 = 1/y. So both error

terms are O(y), and we can combine them. As µ has Dirichlet series 1/ζ,∑∞
d=1 1/d

2 = 1/ζ(2). But ζ(2) = π2/6 (Euler: Basel problem), so

Q(y2) =
6

π2
y2 +O(y) : Q(x) =

6

π2
x+O(

√
x). // [6]

[Seen – Problems] N. H. Bingham
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