M3P16 ANALYTIC NUMBER THEORY: SOLUTIONS TO EXAMINATION 2013

Q1 (i). Taking $x = p_n$ in $\pi(x) := \sum_{p \le x} 1$ gives $\pi(p_n) = \sum_{p \le p_n} 1 = n$. By PNT, $\pi(x) \sim x/\log x$, so $n \sim p_n/\log p_n$:

$$n\log p_n/p_n \to 1. \tag{1}$$

Taking logs of (1), $\log n + \log \log p_n - \log p_n \to 0$. Dividing this by $\log p_n$,

$$\frac{\log n}{\log p_n} + \frac{\log \log p_n}{\log p_n} - 1 \to 0$$

But $\log x = o(x)$, so $\log \log p_n = o(\log p_n)$, so this says

$$\log n / \log p_n \to 1. \tag{2}$$

Multiply (1) and (2): $n \log n/p_n \to 1$, i.e. $p_n \sim n \log n$. // [8, seen] (ii) With $d_n := p_{n+1} - p_n$, $D(x) := \sum_{1 < n \le x} d_n = p_{[x]+1} - p_2 \sim p_{[x]+1} \sim x \log x$, by (i). Abel summation with $a_n := d_n$, $b(t) := 1/\log t$ $(t \ge 2)$ gives

$$\sum_{1 < n \le x} \frac{d_n}{\log n} = \frac{D(x)}{\log x} + \int_2^x \frac{D(t)}{t \log^2 t} dt.$$

By above, $D(t) \sim t \log t$, so the first term on RHS $\sim x$. Also the integrand $\sim 1/\log t$, so the integral $\sim x/\log x$, so the second term is negligible w.r.t. the first term. So

$$\sum_{1 < n \le x} \frac{d_n}{\log n} \sim x.$$
 [6, unseen]

(iii) $\liminf d_n / \log n \le 1$: for if not, there exist $\delta > 0$ and N with

$$d_n/\log n \ge 1 + \delta > 1 \qquad \forall \ n \ge N$$

Then

$$\sum_{1 < n \le x} \frac{d_n}{\log n} = \sum_{1}^{N-1} + \sum_{N \le n \le x} \dots \ge \sum_{1}^{N-1} \dots + (1+\delta) \sum_{N \le n \le x} 1:$$
$$\sum_{1 < n \le x} \frac{d_n}{\log n} \ge const + (1+\delta)([x] - N + 1),$$

 \mathbf{SO}

$$\liminf \frac{1}{x} \sum_{1 < n \le x} \frac{d_n}{\log n} \ge 1 + \delta > 1,$$

contradicting $\lim \dots = 1$. The same argument shows (by contradiction) that $1 \leq \limsup \dots$ [6, unseen]

[(i) seen, Prob. 1 Q4; (ii), (iii) unseen]

Q2, Theorem (Mertens' Second theorem; HW Th. 427).

$$\sum_{p \le x} 1/p = \log \log x + C_1 + O(1/\log x) \qquad (x \ge 2),$$

for some constant C_1 .

Proof. We use Abel summation, with

 $a(n) := \log n/n$ (*n* prime), 0 otherwise, $A(x) := \sum_{\substack{n \le x} a_n. \\ [2, seen]}$ By Mertens' First Theorem, $\sum_{p \leq x} \log p/p = \log x + O(1)$ (given),

$$A(x) = \log x + r(x), \qquad |r(.)| \le c_0 \qquad (x > 1),$$

a(1) = 0, and

$$\sum_{p \le x} 1/p = \sum_{2 \le n \le x} \frac{a(n)}{\log n}.$$
 [4, seen]

By Abel summation, this gives

$$\sum_{p \le x} 1/p = \frac{A(x)}{\log x} + \int_2^x \frac{A(t)}{t \log^2 t} dt = 1 + \frac{r(x)}{\log x} + \int_2^x \frac{dt}{t \log t} + I(x), \quad [\mathbf{4}, \text{seen}]$$

where

$$I(x) := \int_2^x \frac{r(t)}{t \log^2 t} dt.$$
 [2, seen]

But

$$\int_{2}^{x} \frac{1}{t \log t} dt = \log \log x - \log \log 2, \qquad [\mathbf{2}, \text{seen}]$$

$$\int_{2}^{\infty} \frac{dt}{t \log^{2} t} < \infty, \qquad \text{as} \qquad \frac{1}{t \log^{2} t} = -\frac{d}{dt} \left(\frac{1}{\log t}\right).$$
 [2, seen]

So $I(x) \to I$, finite, as $x \to \infty$, and

$$I(x) = I - s(x), \qquad |s(x)| \le c_0 \int_x^\infty \frac{dt}{t \log^2 t} = \frac{c_0}{\log x}.$$
 [2, seen]

This gives the result with $C_1 := 1 - \log \log 2 + I$. // **[2**, seen] [Seen, Lecture 13]

Q3. The *Möbius function* μ is defined by $\mu(1) := 1$; $\mu(n) := (-)^k$ is n is a product of k distinct primes; $\mu(n) = 0$ otherwise (i.e., if n is not square-free). [1, seen]

The von Mangoldt function Λ is defined by $\Lambda(n) = \log p$ if $n = p^m$ is a prime power, 0 otherwise. (i) For n = 1, $u(1)\mu(1) = 1.1 = 1$; for n > 1, $(u * \mu)(n) := \sum_{i|n} \mu(i)$. If $n = p_1^{r_1} \dots p_k^{r_k}$ (from FTA), the i > 1 with $\mu(i) \neq 0$ are of the form $i = q_1 \dots q_j$ with the qs distinct primes from $\{p_1, \dots, p_k\}$. There are $\binom{k}{j}$ such choices, each giving an i with $\mu(i) = (-)^j$. As $\binom{n}{0} = 1$, this holds also for j = 0. So by the Binomial Theorem,

$$(u * \mu)(n) = \sum_{i|n} \mu(i) = \sum_{j=0}^{k} (-)^{j} \binom{k}{j} = (1-1)^{k} = 0.$$
 [4, seen]

(ii) The same proof gives

$$\sum_{i|n} |\mu(i)| = \sum_{j=0}^{k} \binom{k}{j} = (1+1)^{k} = 2^{k}.$$
 [2, seen]

(iii) With $\ell(n) := \log n$, $\Lambda(1) = \ell(1) = 0$. For n > 1, $n = p_1^{r_1} \dots p_k^{r_k}$, say. Then $(\Lambda * u)(n) = \sum_{i|n} \Lambda(i)$. The divisors i of n are $i = p_1^{s_1} \dots p_1^{s_k}, 0 \le s_j \le r_j$. Those with $\Lambda(i) \neq 0$ are those with $i = p_j^{s_j}, 1 \le j \le k$, each with $\Lambda(i) = \log p_j$. There are r_j possibilities for each j, so $\sum_{i|n} \Lambda(i) = \sum_{j=1}^k r_j \log p_j = \log \prod_j p_j^{r_j} = \log n = \ell(n)$. So $\Lambda * u = \ell$, and then $\ell * \mu = \Lambda$ follows by Möbius inversion (here $u = (u_n), u_n = 1$ for all n), i.e. $\Lambda(n) = \sum_{d|n} \mu(n/d) \log d$. //

(iv) On the left: the Dirichlet series of $1/\zeta$ is $\sum_{1}^{\infty} \mu(n)/n^{s}$. Differentiating, that of $D(1/\zeta)$ is $-\sum_{1}^{\infty} \mu(n) \log n/n^{s}$. On the right: the Dirichlet series of $-\zeta'/\zeta$ is $\sum_{1}^{\infty} \Lambda(n)/n^{s}$. Since the product of Dirichlet series is the Dirichlet series of the Dirichlet convolution, (iv) follows. [4, unseen] (v) Now (iv) says $-(\mu \ell) = \mu * \Lambda$. So by Möbius inversion, $\Lambda = -(\mu \ell) * u$:

$$\Lambda(n) = -\sum_{d|n} \mu(d) \log d.$$
 [4, unseen]

[(i)-(iii) seen, Lectures 10-12, II.6,7; (iv), (v) unseen – HW Th. 297, 298.]

Q4. (i) $3 + 4\cos\theta + \cos 2\theta = 2 + 4\cos\theta + 2\cos^2\theta = 2(1 + \cos\theta)^2$. // [2, seen]

(ii) If all $a_n \ge 0$ and the Dirichlet series $f(s) := \sum_{1}^{\infty} a_n/n^s$ converges for $Re \ s = \sigma > \sigma_0$, then

$$3f(\sigma) + 4Ref(\sigma + it) + Ref(\sigma + 2it) \ge 0 \qquad (\sigma > \sigma_0).$$

Proof. $3f(\sigma) + 4Ref(\sigma + it) + Ref(\sigma + 2it) = \sum_{n=1}^{\infty} \frac{a_n}{n^{\sigma}} Re(3 + 4n^{-it} + n^{-2it})$. If $\theta_n := t \log n$, $Re(3 + 4n^{-it} + n^{-2it}) = 3 + 4 \cos \theta_n + \cos 2\theta_n \ge 0$, and $a_n/n^{\sigma} \ge 0$. So the sum of their products is ≥ 0 . // [5, seen]

Hence, for $\sigma > 1$ and all t,

$$H(\sigma) := \zeta(\sigma)^3 |\zeta(\sigma + it)|^4 |\zeta(\sigma + 2it)| \ge 1.$$

Proof. $\log \zeta(s)$ has a Dirichlet series with non-negative coefficients, $\log \zeta(s) = f(s) = \sum_{1}^{\infty} a_n/n^s$ for $a_n \ge 0$ $(a_n = 1/m$ if $n = p^m$ is a prime power, 0 otherwise). By the Proposition, $3f(\sigma) + 4Ref(\sigma + it) + Ref(\sigma + 2it) \ge 0$. So $(\log z = \log(re^{i\theta}) = \log r + i\theta$, so $Re \log z = \log r = \log |z|)$

 $3\log\zeta(\sigma) + 4\log|\zeta(\sigma + it)| + \log|\zeta(\sigma + 2it)| \ge 0.$

Exponentiating gives the result. //

Hence: $\zeta(1+it) \neq 0$ for $t \neq 0$.

Proof (by contradiction). If not, $\zeta(1+it) = 0$ for some $t \neq 0$. Then

$$\frac{\zeta(\sigma+it)-\zeta(1+it)}{(\sigma+it)-(1+it)} = \frac{\zeta(\sigma+it)}{\sigma-1} \to \zeta'(1+it) \qquad (\sigma\downarrow 1),$$

as ζ is holomorphic at 1 + it (indeed, everywhere except at 1 - proved in lectures). In the Corollary,

$$H(\sigma) = \left[(\sigma - 1)\zeta(\sigma) \right]^3 \cdot \left(\frac{|\zeta(\sigma + it)|}{\sigma - 1} \right)^4 \cdot (\sigma - 1) \cdot \left[|\zeta(\sigma + 2it)| \right].$$

Now $(\sigma - 1)\zeta(\sigma) \to 1$ $(\sigma \downarrow 1)$ $(\zeta$ has a simple pole of residue 1 at 1). So $[...]^3 \to 1; (...)^4 \to (\zeta'(1+it))^4$ by above; $|\zeta(\sigma+2it)| \to \zeta(1+2it)$. Combining, the third factor $\sigma - 1$ gives $H(\sigma) \to 0$ as $\sigma \to 1$, contradicting the Corollary above. // [6, seen]

This result is needed to ensure the holomorphy on the 1-line of $-\zeta'/\zeta$, whose Dirichlet series $\sum_{1}^{\infty} \Lambda(n)/n^{s}$ encodes PNT. [2, seen] [Seen: Lecture 20, III.4]

[5, seen]