
M3P16 ANALYTIC NUMBER THEORY: SOLUTIONS TO
EXAMINATION 2013

Q1 (i). Taking x = pn in π(x) :=
∑

p≤x 1 gives π(pn) =
∑

p≤pn 1 = n. By
PNT, π(x) ∼ x/ log x, so n ∼ pn/ log pn:

n log pn/pn → 1. (1)

Taking logs of (1), log n+ log log pn − log pn → 0. Dividing this by log pn,

log n

log pn
+

log log pn
log pn

− 1 → 0.

But log x = o(x), so log log pn = o(log pn), so this says

log n/log pn → 1. (2)

Multiply (1) and (2): n log n/pn → 1, i.e. pn ∼ n log n. // [8, seen]
(ii) With dn := pn+1−pn, D(x) :=

∑
1<n≤x dn = p[x]+1−p2 ∼ p[x]+1 ∼ x log x,

by (i). Abel summation with an := dn, b(t) := 1/ log t (t ≥ 2) gives∑
1<n≤x

dn
log n

=
D(x)

log x
+
∫ x

2

D(t)

tlog2t
dt.

By above, D(t) ∼ t log t, so the first term on RHS ∼ x. Also the integrand
∼ 1/ log t, so the integral ∼ x/ log x, so the second term is negligible w.r.t.
the first term. So ∑

1<n≤x

dn
log n

∼ x. [6, unseen]

(iii) lim inf dn/ log n ≤ 1: for if not, there exist δ > 0 and N with

dn/ log n ≥ 1 + δ > 1 ∀ n ≥ N.

Then ∑
1<n≤x

dn
log n

=
N−1∑
1

+
∑

N≤n≤x

... ≥
N−1∑
1

...+ (1 + δ)
∑

N≤n≤x

1 :

∑
1<n≤x

dn
log n

≥ const+ (1 + δ)([x]−N + 1),

so

lim inf
1

x

∑
1<n≤x

dn
log n

≥ 1 + δ > 1,

contradicting lim ... = 1. The same argument shows (by contradiction) that
1 ≤ lim sup .... [6, unseen]
[(i) seen, Prob. 1 Q4; (ii), (iii) unseen]
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Q2, Theorem (Mertens’ Second theorem; HW Th. 427).∑
p≤x

1/p = log log x+ C1 +O(1/ log x) (x ≥ 2),

for some constant C1.

Proof. We use Abel summation, with

a(n) := log n/n (n prime), 0 otherwise, A(x) :=
∑

n≤x
an.

[2, seen]
By Mertens’ First Theorem,

∑
p≤x log p/p = log x+O(1) (given),

A(x) = log x+ r(x), |r(.)| ≤ c0 (x > 1),

a(1) = 0, and ∑
p≤x

1/p =
∑

2≤n≤x

a(n)

log n
. [4, seen]

By Abel summation, this gives

∑
p≤x

1/p =
A(x)

log x
+
∫ x

2

A(t)

t log2t
dt = 1 +

r(x)

log x
+
∫ x

2

dt

t log t
+ I(x), [4, seen]

where

I(x) :=
∫ x

2

r(t)

t log2t
dt. [2, seen]

But ∫ x

2

1

t log t
dt = log log x− log log 2, [2, seen]

∫ ∞

2

dt

t log2t
< ∞, as

1

t log2t
= − d

dt

( 1

log t

)
. [2, seen]

So I(x) → I, finite, as x → ∞, and

I(x) = I − s(x), |s(x)| ≤ c0

∫ ∞

x

dt

t log2t
=

c0
log x

. [2, seen]

This gives the result with C1 := 1− log log 2 + I. // [2, seen]
[Seen, Lecture 13]
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Q3. The Möbius function µ is defined by µ(1) := 1; µ(n) := (−)k is n is
a product of k distinct primes; µ(n) = 0 otherwise (i.e., if n is not square-
free). [1, seen]

The von Mangoldt function Λ is defined by Λ(n) = log p if n = pm is a
prime power, 0 otherwise. [1, seen]
(i) For n = 1, u(1)µ(1) = 1.1 = 1; for n > 1, (u ∗ µ)(n) :=

∑
i|nµ(i).

If n = pr11 . . . prkk (from FTA), the i > 1 with µ(i) ̸= 0 are of the form

i = q1 . . . qj with the qs distinct primes from {p1, . . . , pk}. There are
(
k
j

)
such

choices, each giving an i with µ(i) = (−)j. As
(
n
0

)
= 1, this holds also for

j = 0. So by the Binomial Theorem,

(u ∗ µ)(n) =
∑
i|n

µ(i) =
k∑

j=0

(−)j
(
k

j

)
= (1− 1)k = 0. [4, seen]

(ii) The same proof gives

∑
i|n

|µ(i)| =
k∑

j=0

(
k

j

)
= (1 + 1)k = 2k. [2, seen]

(iii) With ℓ(n) := log n, Λ(1) = ℓ(1) = 0. For n > 1, n = pr11 ...prkk , say. Then
(Λ ∗ u)(n) =

∑
i|n Λ(i). The divisors i of n are i = ps11 ...psk1 , 0 ≤ sj ≤ rj.

Those with Λ(i) ̸= 0 are those with i = p
sj
j , 1 ≤ j ≤ k, each with Λ(i) =

log pj. There are rj possibilities for each j, so
∑

i|n Λ(i) =
∑k

j=1 rj log pj =
log

∏
j p

rj
j = log n = ℓ(n). So Λ ∗u = ℓ, and then ℓ ∗µ = Λ follows by Möbius

inversion (here u = (un), un = 1 for all n), i.e. Λ(n) =
∑

d|n µ(n/d) log d.
// [4, seen]
(iv) On the left: the Dirichlet series of 1/ζ is

∑∞
1 µ(n)/ns. Differentiating,

that of D(1/ζ) is −∑∞
1 µ(n) log n/ns. On the right: the Dirichlet series of

−ζ ′/ζ is
∑∞

1 Λ(n)/ns. Since the product of Dirichlet series is the Dirichlet
series of the Dirichlet convolution, (iv) follows. [4, unseen]
(v) Now (iv) says −(µℓ) = µ ∗ Λ. So by Möbius inversion, Λ = −(µℓ) ∗ u:

Λ(n) = −
∑
d|n

µ(d) log d. [4, unseen]

[(i)-(iii) seen, Lectures 10-12, II.6,7; (iv), (v) unseen – HW Th. 297, 298.]
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Q4. (i) 3 + 4 cos θ+ cos 2θ = 2+ 4 cos θ+2cos2θ = 2(1+ cos θ)2. // [2, seen]

(ii) If all an ≥ 0 and the Dirichlet series f(s) :=
∑∞

1 an/n
s converges for

Re s = σ > σ0, then

3f(σ) + 4Ref(σ + it) +Ref(σ + 2it) ≥ 0 (σ > σ0).

Proof. 3f(σ)+4Ref(σ+ it)+Ref(σ+2it) =
∑∞

1
an
nσRe(3+4n−it+n−2it). If

θn := t log n, Re(3+4n−it+n−2it) = 3+4 cos θn+cos 2θn ≥ 0, and an/n
σ ≥ 0.

So the sum of their products is ≥ 0. // [5, seen]

Hence, for σ > 1 and all t,

H(σ) := ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1.

Proof. log ζ(s) has a Dirichlet series with non-negative coefficients, log ζ(s) =
f(s) =

∑∞
1 an/n

s for an ≥ 0 (an = 1/m if n = pm is a prime power, 0
otherwise). By the Proposition, 3f(σ) + 4Ref(σ + it) + Ref(σ + 2it) ≥ 0.
So (log z = log(reiθ) = log r + iθ, so Re log z = log r = log |z|)

3 log ζ(σ) + 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)| ≥ 0.

Exponentiating gives the result. // [5, seen]

Hence: ζ(1 + it) ̸= 0 for t ̸= 0.

Proof (by contradiction). If not, ζ(1 + it) = 0 for some t ̸= 0. Then

ζ(σ + it)− ζ(1 + it)

(σ + it)− (1 + it)
=

ζ(σ + it)

σ − 1
→ ζ ′(1 + it) (σ ↓ 1),

as ζ is holomorphic at 1 + it (indeed, everywhere except at 1 – proved in
lectures). In the Corollary,

H(σ) = [(σ − 1)ζ(σ)]3.

(
|ζ(σ + it)|

σ − 1

)4

.(σ − 1).[|ζ(σ + 2it)|].

Now (σ − 1)ζ(σ) → 1 (σ ↓ 1) (ζ has a simple pole of residue 1 at 1). So
[...]3 → 1; (...)4 → (ζ ′(1+it))4 by above; |ζ(σ+2it)| → ζ(1+2it). Combining,
the third factor σ − 1 gives H(σ) → 0 as σ → 1, contradicting the Corollary
above. // [6, seen]

This result is needed to ensure the holomorphy on the 1-line of −ζ ′/ζ,
whose Dirichlet series

∑∞
1 Λ(n)/ns encodes PNT. [2, seen]

[Seen: Lecture 20, III.4]
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