M3P16 ANALYTIC NUMBER THEORY: SOLUTIONS TO
EXAMINATION 2013

Q1 (i). Taking x = p, in w(x) == X <, 1 gives 7(p,) = Xp<,, 1 = n. By
PNT, 7(z) ~ x/logx, so n ~ p,/logp,:
nlogpn/pn — 1. (1)
Taking logs of (1), logn + loglog p, — log p,, — 0. Dividing this by log p,,
logn  loglogp,
_|_
logp,  logpn
But log z = o(z), so loglog p, = o(log p,), so this says

—1—=0.

logn/logp, — 1. (2)
Multiply (1) and (2): nlogn/p, — 1, ie. p, ~nlogn. // 8, seen]
(H) With dn ‘= Pn+1 — Pn, D(.Z’) = Zl<n§x dn = Plz]+1 — P2 ™~ Plz]+1 ™~ xlogxa
by (i). Abel summation with a, := d,, b(t) := 1/logt (t > 2) gives
d, D @ D(t
s D) DO,
1 onsa logn logx 2 tlog“t

By above, D(t) ~ tlogt, so the first term on RHS ~ z. Also the integrand
~ 1/logt, so the integral ~ x/logz, so the second term is negligible w.r.t.
the first term. So

1<n<z
(iii) liminf d, /logn < 1: for if not, there exist § > 0 and N with

dy,/logn>1+§>1 vV n> N.

dn
logn

~ T [6, unseen)]

Then

-1

N—-1 N
=> + L= YA (140) > 1
1 N

<n<z 1 N<n<lz

d
logn

2.

1<n<lz

S8

n

> const + (1 +6)([z] = N +1),

SO

1 dy,
liminf — > >1+6>1,
T 5%, logn
contradicting lim ... = 1. The same argument shows (by contradiction) that
1 <limsup.... [6, unseen)]
[(i) seen, Prob. 1 Q4; (ii), (iii) unseen]



Q2, Theorem (Mertens’ Second theorem; HW Th. 427).
Zpgxl/pzloglog:v+01+0(1/1og$) (x > 2),

for some constant C].

Proof. We use Abel summation, with

a(n) :=logn/n (n prime), 0 otherwise, Az) == an@n'

2, seen]
By Mertens’ First Theorem, 3 -, logp/p = logz + O(1) (given),
A(x) =logz + r(z), 17()] < co (x> 1),
a(l) =0, and
Zpgxl/p = Z2§n§xfo(;>1' [4, seen]

By Abel summation, this gives

Zpgml/p Al) +/: Alt) dt =1+ r(z) +/: dt + I(z), [4,seen]

- log t log®t log x tlogt
where .
I(x) ::/ r( )2 dt. 2, seen]
2 t log“t
But I
/2 tlogtdt = loglog x — loglog 2, [2, seen]
/OO dt < 1 d ( 1 ) [2 ]
00 as —— = (). seen
2t log?t ’ t log?t dt \log t ’

So I(x) — I, finite, as x — oo, and

© dt
I(x) =1 - s(z), |s(x)] < co/m o™ = locgox' 2, seen)]
This gives the result with Cy := 1 —loglog2+ 1. // 2, seen]

[Seen, Lecture 13]



3. The Mobius function n is defined b 1; =)k is n is
Q fi 0 y u(1) = 1; p(n) == (-)

a product of k distinct primes; p(n) = 0 otherwise (i.e., if n is not square-
free). [1, seen]

The von Mangoldt function A is defined by A(n) =log pifn = p™is a
prime power, 0 otherwise. [1, seen]

(i) For n = 1, u(u(l) = 1.1 = 1; for n > 1, (u* p)(n) = 3;u(i).
If n = pi*...p (from FTA), the i > 1 with u(i) # 0 are of the form
i = qi...q; with the gs distinct primes from {py,...,px}. There are (k) such

choices, each giving an ¢ with p(i) = (=)7. As (0) = 1, this holds also for
7 = 0. So by the Binomial Theorem,

(uxp)(n) = p(i) ij —)/ (k> =(1-1"=0. 4, seen]

in j=0

(ii) The same proof gives

Sl =3 () = a2 2,scen]

iln 7=0

(iii) With ¢(n) :=logn, A(1) = ¢(1) = 0. For n > 1,n = pi*...p;*, say. Then
(A *xu)(n) = X, A(9). The divisors i of n are i = pi'..pi*,0 < 55 < 7).
Those with A(i) # 0 are those with i = p’, 1 < j < k, each with A(i) =
log p;. There are r; possibilities for each j, so >3;, A(i) = Z?Zl rjlogp; =
logI1;p;’ =logn = {(n). So Asxu = ¢, and then £y = A follows by Mobius
inversion (here u = (uy), u, = 1 for all n), i.e. A(n) = X4, u(n/d)logd.
// [4, seen]
(iv) On the left: the Dirichlet series of 1/¢ is >7° u(n)/n®. Differentiating,
that of D(1/¢) is —>3° u(n)logn/n®. On the right: the Dirichlet series of
—('/¢ is X7° A(n)/n®. Since the product of Dirichlet series is the Dirichlet
series of the Dirichlet convolution, (iv) follows. [4, unseen]
(v) Now (iv) says —(uf) = u* A. So by Mobius inversion, A = —(uf) * u:

— > u(d)logd. [4, unseen]
dn

[(i)-(iii) seen, Lectures 10-12, 11.6,7; (iv), (v) unseen — HW Th. 297, 298.]



Q4. (i) 3+4cosf + cos20 = 2+ 4 cos 0 + 2cos?0 = 2(1 + cos0)?. // [2, seen]

(i) If all @, > 0 and the Dirichlet series f(s) := >.{°a,/n® converges for
Re s = 0 > 09, then
3f(o) + 4Ref(o +it) + Ref(o + 2it) > 0 (o > 09).

Proof. 3f(c)+4Ref(0+it)+ Ref(o+2it) = 37° 2 Re(34+4n~" +n~ ). If
0, := tlogn, Re(3+4n~"+n=2") = 3+4 cosf, +cos 20, > 0, and a, /n° > 0.
So the sum of their products is > 0. // [5, seen]

Hence, for o > 1 and all ¢,
H(o) = ¢(o)’[C(o +it)||C(o + 2it)| > 1.
Proof. log ((s) has a Dirichlet series with non-negative coefficients, log {(s) =
f(s) = ¥°a,/n® for a, > 0 (a, = 1/m if n = p™ is a prime power, 0
otherwise). By the Proposition, 3f(c) + 4Ref(c + it) + Ref(o + 2it) > 0.
So (log z = log(re®) = logr + 6, so Relog z = logr = log |2|)
3log (o) + 4log |((o +it)| + log|((o + 2it)| > 0.

Exponentiating gives the result. // (5, seen]
Hence: ((1+it) # 0 for ¢t # 0.

Proof (by contradiction). If not, {(1 + it) = 0 for some ¢ # 0. Then

C(o+it) = C(1L+it) ((o+it) , :
= 14t 1
i) (Ut~ o—1 curi) (ol
as (¢ is holomorphic at 1 4 it (indeed, everywhere except at 1 — proved in
lectures). In the Corollary,

C(o+it)\* .
Hio) = (o = e (X050 o ).t + 2
Now (0 —1)((¢) — 1 (¢ | 1) (¢ has a simple pole of residue 1 at 1). So
]2 = 1; (.)* = (¢ (1+it))* by above; |¢(o+2it)| — ((1+2it). Combining,
the third factor o — 1 gives H(o) — 0 as ¢ — 1, contradicting the Corollary

c—1

above. // [6, seen]
This result is needed to ensure the holomorphy on the 1-line of —(’/(,
whose Dirichlet series >7° A(n)/n® encodes PNT. [2, seen]

[Seen: Lecture 20, I11.4]



