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Chapter I. PRELIMINARIES

1. PRIMES. Recall (M2PM3, I.2) N := {1, 2, 3, ...}, the set of natural
numbers. Also, N0 := {0, 1, 2, ...} = N ∪ {0}. We can take these for granted,
or proceed as follows (John von NEUMANN (1903-57) in 1923):

0←→ ∅; 1←→ {∅}; 2←→ {0, 1}; 3←→ {0, 1, 2}; etc.

Addition comes with N. Its inverse, subtraction, gives

Z := {...,−3,−2,−1, 0, 1, 2, 3, ...} (integers – Z for Zahl),

an additive group. We can multiply integers, and divide non-zero integers,
leading to the rationals:

Q := {m/n : m,n ∈ Z, n ̸= 0} (Q for quotient).

The ancient Greeks had N, Z and Q. We meet the reals R as:
(i) lengths of line segments (as in Greek geometry);
(ii) infinite decimal expansions.
Constructing R from Q is hard, and was not done till 1872, in two ways:
(i) Dedekind cuts (or sections): Richard DEDEKIND (1831-1916);
(ii) Cauchy sequences: Georg CANTOR (1845-1918).
Dedekind cuts are specific to R, as they depend on the total ordering of the
line (“x < y, x > y or x = y”). Cauchy sequences are general, and can be
done in any metric space.
Then getting C from R is easy (Argand diagram: M2PM3, I.1).

The subject of Number Theory (NT) splits several ways:
Analytic v. algebraic. We develop Analytic Number Theory (ANT) using
Analysis, specifically Complex Analysis (M2PM3, NHB); Algebraic Number
Theory concerns rings, ideals, field extensions (Galois theory), etc.

There is also Elementary Number Theory (ENT). Here ‘elementary’ does
not mean ‘easy’, but ‘without using preliminaries such as Complex Analysis
– which (if one knows Complex Analysis, as we do) is harder.
Multiplicative v. Additive. This course is on Multiplicative Number Theory –
concerning multiplicative aspects such as primes. Additive Number Theory
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concerns, e.g., Goldbach’s Conjecture (is every even integer n > 2 the sum
of two primes?), Waring’s Problem, etc.

Theorem (FUNDAMENTAL THEOREMOF ARITHMETIC, FTA).
Every integer n ≥ 2 can be written uniquely (to within order) as a product
of prime factors.

Proof. Existence. Induction. True for n = 2. Assume true for every integer
< n. If n is not prime (i.e. is composite), it has a non-trivial divisor d
(1 < d < n). So n = cd (1 < c < n). So each of c, d is a product of primes,
by the inductive hypothesis. So n is too, completing the induction.
Uniqueness. Induction. True for n = 2. Assume true for every integer
< n. If n is prime, the result holds, so assume n is composite. If it has two
factorisations

n = p1 . . . pr = q1 . . . qs,

to show r = s and each p is some q. As p1 is prime and divides the product
n = q1 . . . qs, it must divide at least one factor (w.l.o.g., q1): p1|q1. Then
p1 = q1 as both p1, q1 are prime. Cancel p1:

n/p1 = p2 . . . pr = q2 . . . qs.

As n is composite, 1 < n/p1 < n. Then the inductive hypothesis tells us
that the two factorisations above of n/p1 agree to within order: r = s, and
p2, . . . , pr are q2, . . . , qr in some order, as required. //

Historical Note. We owe Mathematics as a subject to the ancient Greeks.
Of the 13 books of Euclid’s Elements (EUCLID of Alexandria, c. 300 BC),
three (Books VI, IX and X) are on Number Theory. From the ordering of
the material in Euclid, it is clear that the Greeks knew that they did not
have a proper theory of irrationals (i.e. reals). Although they did not state
FTA, it had been assumed that they ”knew it really”, but did not state it
explicitly. This view is contradicted by Salomon BOCHNER (1899-1982)
(Collected Papers, Vol. 4, AMS, 1992). According to Bochner, the Greeks
did not know FTA, nor have a notational system adequate even to state it!

L. E. DICKSON (1874-1954) (History of the Theory of Numbers Vols 1-3,
1919-23) does not address the question of the Greeks and FTA!

The first clear statement and proof of FTA is in Gauss’ thesis (C. F.
GAUSS (1777-1855); Disquisitiones Arithmeticae, 1798, publ. 1801).
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