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Lecture 11. 7.2.2014

Möbius Inversion
Corollary 1.

b(n) =
∑

i|n a(i), i.e. b = a ∗ u,⇔ a(n) =
∑

i|n µ(i)b
(
n
i

)
, i.e. a = b ∗ µ.

Proof. If b = a ∗ u, then b ∗µ = a ∗ u ∗µ = a ∗ (u ∗ µ) = a ∗ e1 = a. Similarly,
if a = b ∗ µ, then a ∗ u = b ∗ µ ∗ u = b ∗ e1 = b. //

Note. Möbius inversion is important in Combinatorics. See e.g. Ch. 12 of
P.J Cameron: Combinatorics: Topics, Techniques, Algorithms, CUP 1999.

Corollary 2. If F vanishes near 0, and G(x) :=
∑∞

1 F (x/n) for x > 0, then
F (x) =

∑∞
1 µ(n)G(x/n).

Proof. As F is 0 near 0, the sum for G is finite. Then

F (x) =
∞∑
1

e1(j)F (x/j) (e1(j) = δ1j,= 1 as j > 1)

=
∞∑
1

F (x/j)
∑
n|j

µ(n) (µ ∗ u = e1)

=
∞∑
n=1

µ(n)
∞∑
k=1

F (x/kn) =
∞∑
1

µ(n)G(x/n). //

Note. Since 1/ζ(s) =
∑∞

1 µ(n)/ns for σ > 1, and ζ(σ) → ∞ as σ → 1, one
would expect that 1/ζ(1) =

∑∞
1 µ(n)/n = 0. This is true, but equivalent to

PNT (see III.10.4, 2012 – link on website; [A] Ch. 4, [R], §13.2). The sum
function M(x) :=

∑
n≤x µ(n) is also important. We shall see later that PNT

implies that M(x) = o(x). Indeed, PNT is also equivalent to it (III.10.4,
2012). Meanwhile, we estimate the partial sums.

Prop. |
∑N

n=1 µn/n| ≤ 1 for all N .

Proof. As µ ∗ u = e1 and un ≡ 1, writing {.} for the fractional part,

1 =
N∑
1

(µ∗u)(n) =
N∑
1

µn

∑
n|N

1 =
N∑
1

µn[N/n] =
N∑
1

µn((N/n)−{N/n}) = N
N∑
1

µn/n−rN ,

1



where rN :=
∑N

1 µn{N/n}. As {N/1} = {N} = 0, |rN | = |
∑N

2 µn{N/n} ≤∑N
2 |µn| ≤ N − 1. Combining, N |

∑N
1 µn/n| ≤ 1 + (N − 1) = N . //

In fact,
∑∞

1 µn/n converges to 0. This looks obvious, as this is 1/ζ(s)
for s = 1, ζ(s) = +∞ for s = 1, and ζ(s).1/ζ(s) ≡ 1. But this is in fact
equivalent to PNT!

7. More Special Dirichlet Series
Squares and square-free numbers. Write S for the set of squares n2: IS(n) := 1
if n ∈ S, 0 otherwise, Q for the set of square-free numbers (no square factors:
‘quadratfrei’ in German).

ζ(2s) =
∞∑
1

1/n2s =
∞∑
1

1/(n2)s =
∞∑
1

IS(n)/n
s. (IS)

If a is completely multiplicative with |an| < 1 and
∑

|an| < ∞, write
S1 :=

∑∞
1 an, S2 :=

∑∞
1 a2n. Then (Euler products, II.4 L9)

S1/S2 =
∏
p

1

1− ap
/
∏
p

1

1− ap2
=

∏
p

1− ap
2

1− ap
=

∏
p

(1 + ap).

Expanding the RHS, we get a sum over an with n square-free (only distinct
prime factors occur). So S1/S2 =

∑
n |µ(n)|an =

∑
n µ(n)

2an (|µ(n)| =
µ(n)2 = 1 if n is square-free, 0 otherwise). Taking in particular an = 1/ns:

ζ(s)/ζ(2s) =
∞∑
1

|µ(n)|/ns =
∞∑
1

µ(n)2/ns =
∞∑
n=1

IQ(n)/n
s (Re s > 1).

(µ2)
Cor. For s = σ + it, σ > 1:∣∣∣ 1

ζ(s)

∣∣∣ ≤ ζ(σ)

ζ(2σ)
≤ ζ(σ);

∣∣∣ 1

ζ(s)
− 1

∣∣∣ ≤ ζ(σ)

ζ(2σ)
− 1 ≤ ζ(σ)− 1.

Proof. |1/ζ(s)| = |
∑∞

1 µn/n
s| ≤

∑∞
1 |µ(n)/ns| ≤

∑∞
1 |µ(n)|/nσ = ζ(σ)/ζ(2σ)

(above) ≤ ζ(σ) (ζ(2σ) ≥ 1). Similarly for the second, subtracting the 1. //

Euler’s totient function, ϕ(n) := #{r ≤ n : (r, n) = 1}. See Problems 4.
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