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Theorem(Merten’s Formula, HW Th 929).∏
p≤x

(1− 1

p
) ∼ e−γ

log x
(x → ∞).

Proof. Write
∑

:=
∑

p

(
log

(
1− 1

p

)
+ 1

p

)
, which is convergent. By Merten’s

Second Theorem and the Constants Lemma (from the Website),∑
p≤x

1

p
= log log x+ C1 + o(1) = log log x+ γ + Σ+ o(1).

Now, ∑
p≤x

(
log

(
1− 1

p

)
+

1

p

)
= Σ+ o(1),

from the definition of Σ. Subtracting:∑
p≤x

log

(
1− 1

p

)
= − log log x− γ + o(1).

That is,

log

[∏
p≤x

(
1− 1

p

)]
= log

[
e−γ

log x

]
+ o(1).

So

log

[∏
p≤x

(1− 1

p
)/

e−γ

log x

]
→ 0 (x → ∞).

So [...] → 1, i.e. ∏
p≤x

(
1− 1

p

)
∼ e−γ

log x
. //

Note. Various attempts have been made to generalise multiplicative number
theory beyond the primes p. Most of these get the orders of magnitude right.
What they do not get right is the e−γ in Mertens’ formula. See various at-
tempts to introduce randomness (see the Handout ‘Prime divisor functions;
Landau’s Poisson extension of PNT; probabilistic number theory’).
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9. Dirichlet’s Hyperbola Identity (DHI)

Theorem (DHI). If 1 < y < x,∑
n≤x

(a ∗ b)(n) =
∑
j≤y

a(j)B(x/j) +
∑
k≤x/y

b(k)A(x/k)− A(y)B(x/y).

Proof. LHS = S :=
∑

jk≤xajbk, as in II.3. Write S1 for the sum of all such
terms with j ≤ y, S2 that of all terms with k ≤ x/y. As in II.3,

S1 =
∑

jk≤x,j≤y
ajbk =

∑
j≤y

aj
∑

k≤x/j
bk =

∑
j≤y

ajB(x/k),

the first sum on RHS, and similarly

S2 =
∑

jk≤x,k≤x/y
ajbk =

∑
k≤x/y

bk
∑

j≤x/k
aj =

∑
k≤x/y

bkA(x/k),

the second sum on RHS. Now S1 + S2 counts all terms, but counts twice
those with both j ≤ y and k ≤ x/y. The sum of these terms is A(y)B(x/y).
So subtracting this ‘corrects the count’, and gives the result. //

Theorem. If dn is the number of divisors of n,∑
n≤x

dn = x log x+ (2γ − 1)x+O(
√
x).

Proof. Take an = bn = 1 (so (a ∗ b)n = dn, by (i)), y =
√
x: as A(x) =

B(x) = [x], Dirichlet’s Hyperbola Identity gives∑
n≤x

dn =
∑
j≤

√
x

[x/j] +
∑
k≤

√
x

[x/k]− [
√
x][

√
x] = 2

∑
j≤

√
x

[x/j]− [
√
x][

√
x].

In each [.] on RHS, write [.] = .− {.}. Each fractional part {.} ∈ [0, 1), so∑
n≤x

dn = 2
∑
j≤

√
x

x/j +O(
√
x)− x+O(

√
x) = 2x

∑
j≤

√
x

1/j − x+O(
√
x),

as (
√
x+O(1))2 = x+O(

√
x). But as in L3, I.4,∑

j≤
√
x
1/j = log

√
x+ γ +O(1/

√
x) =

1

2
log x+ γ +O(1/

√
x).

So∑
n≤x

dn = 2x(log
√
x+γ+O(1/

√
x))−x+O(

√
x) = x log x+(2γ−1)x+O(

√
x). //
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