m3pm16l21.tex.tex Lecture 21. 28.2.2014.

§5. Newman's theorem

The result of this section gives PNT easily (III.6, L23). It is due to D. J. Newman (1930-2007) in 1980, simplifying work of A. E. Ingham (1900-1967) in 1935. The further simplified version we present is due to J. Korevaar (1923-) in 2004 (Proc. AMS + Nieuw Arch. Wiskunde) (last year we used the Wiener-Ikehara theorem as in Korevaar's book, also of 2004).

Theorem 1. If (i) $f(z) := \sum_{1}^{\infty} a_n/n^z$ $(a_n \ge 0)$ converges in $Re \ z > 1$, (ii) g(z) := f(z) - A/(z-1) has an analytic (so continuous) continuation to $Re \ z \ge 1$, and (iii) $s_n := \sum_{1}^{n} a_k = O(n)$ - then $s_n/n \to A$.

Proof. Put $s(v) := \sum_{n \leq v} a_n$ (so $s(v) = s_n$ on (n, n+1], s(v) = 0 on \mathbb{R}_-). Then by (iii),

$$s(v)/v = O(1).$$

By partial summation,

$$f(z) := \sum_{1}^{\infty} (s_n - s_{n-1})/n^z = \sum_{1}^{\infty} s_n \left(\frac{1}{n^z} - \frac{1}{(n+1)^z}\right)$$
$$= \sum_{1}^{\infty} s_n z \int_n^{n+1} dv/v^{z+1} = z \int_1^{\infty} s(v)v^{-z-1}dv.$$

So by (ii),

$$g(z) - A = f(z) - \frac{A}{z - 1} - A = f(z) - \frac{Az}{z - 1} = z \int_{1}^{\infty} \left(\frac{s(v)}{v} - A\right) v^{-z} dv.$$

For $v \ge 1$, write $v = e^t$;

$$\rho(t) := e^{-t}s(e^t) - A = \frac{s(v)}{v} - A.$$

So $\rho(.) = 0$ on \mathbb{R}_- and $\rho(t) = O(1)$. For $t > u \ge 0$,

$$\rho(t) - \rho(u) = e^{-t}s(e^t) - e^{-u}s(e^u) \ge (e^{-t} - e^{-u})s(e^u)$$

 $\geq -C(1 - e^{-(t-u)}) \to 0 \qquad (t, u \to \infty, \quad 0 < t - u \to 0),$

by (iii). In words: ρ is *slowly decreasing (SD)* (i.e., ρ can decrease only slowly – it may well be increasing).

We pass from Dirichlet series to the Laplace transform $(LT) L\rho$ of ρ :

$$G(z) := L\rho(z) := \int_0^\infty \rho(t)e^{-zt}dt = \int_1^\infty \left(\frac{s(v)}{v} - A\right)v^{-z-1}dv = \frac{g(z+1) - A}{z+1}.$$

By (ii), $G(z) = L\rho(z)$ is analytic in $Re \ z > 0$ and has a continuous extension to $Re \ z \ge 0$. To prove Theorem 1 we have to show

$$\rho(t) \to 0 \qquad (t \to \infty).$$

This follows from the more general Theorem 2 below.

Theorem 2. (i) If $\rho(t) = 0$ on R_- and $|\rho(.)| \le M$ on \mathbb{R}_+ , its LT $G := L\rho$ is analytic in $x = Re \ z > 0$.

(ii) If also

$$G(x+iy) \to G(iy): \quad L\rho(x+iy) \to L\rho(iy) \quad (x \downarrow 0) \quad (-R \le y \le R)$$

uniformly (or in L_1) – then for all $T, \delta > 0$

$$|\int_{T}^{T+\delta} \rho(t)dt| \leq \frac{4M}{R} + \frac{1}{2\pi} |\int_{-R}^{R} G(iy) \cdot \frac{e^{\delta iy} - 1}{y} \cdot \left(1 - \frac{y^2}{R^2}\right) e^{iTy} dy|.$$

(iii) If R here can be arbitrarily large and ρ is SD, then

$$\rho(t) \to 0 \qquad (T \to \infty).$$

Proof. (i) The integral for $G = L\rho$ converges in $x = Re \ z > 0$, and Laplace transforms are analytic where convergent (we quote this; we know it for Dirichlet series, all we actually need).

(ii) The truncated Laplace transform $G_T(z) := \int_0^T \rho(t) e^{-zt} dt$ is entire. We estimate

$$G_{T+\delta}(0) - G_T(0) = \int_T^{T+\delta} \rho(t) dt.$$
 (*)

With $\Gamma := C(0, R)$ the circle centre 0 radius R, by Cauchy's Residue Theorem

$$2\pi i G_T(0) = \int_{\Gamma} G_T(z) \cdot \frac{1}{z} \cdot dz.$$