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Lecture 24. 4.3.2014.
Theorem (Riemann, 1859). The Riemann zeta function satisfies the func-
tional equation
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Proof. We follow Titchmarsh [T], §2.6. From Euler’s integral definition of Γ,∫ ∞
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As Ψ decreases exponentially, the integral is convergent for all s. So the
above holds for all s by analytic continuation. Now RHS is invariant under
interchanging s and 1− s, hence so is the LHS, which is (FE). //

Corollary. ζ(0) = −1
2
; ζ(−2n) = 0 (n = 1, 2, . . .).
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Proof. Γ has a simple pole at 0 of residue 1; ζ has a simple pole at 1 of
residue 1. So near s = 0, (FE) and Γ(1
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The RHS of (FE) is holomorphic at s = 2n. The LHS contains a (sim-
ple) pole from Γ(−1

2
s), so this must be cancelled by a (simple) zero of ζ:

ζ(−2n) = 0. //

The zeros of ζ at −2n are called the trivial zeros.

Corollary. The function
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is entire, and satisfies the functional equation

ξ(s) = ξ(1− s). (FE − ξ)

Proof. The RHS has apparent poles from the Γ and ζ factors. But the pole
of the first is cancelled by the factor 1 − s, and the poles of the second are
cancelled by the trivial zeros. So there are no singularities, so ξ is entire.
Then (FE − ξ) follows from (FE). //

Note. 1. The factor 1
2
in ξ is for convenience (and historical reasons), and

allows us to write
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2. The functional equation shows that ξ is invariant under reflection in
the line σ = 1

2
– the critical line of III.1 (Riemann, 1859). So we may

restrict attention throughout to the half-plane σ ≥ 1
2
. Since also Γ(s) = Γ(s),

we may restrict attention to t ≥ 0 – and as (III.4) there is a rectangle
1− ϵ ≤ σ ≤ 1, 0 ≤ t ≤ 2 on which ζ is non-zero) to t ≥ 2.
3. Euler’s Reflection Principle Γ(z)Γ(1− z) = π/ sin πz also gives reflection-
invariance about the same line, and as (FE) shows, there are links between
Γ and ζ (cf. WW XII for Γ, XIII for ζ).
4. For n = 1, 2, . . ., one has ([T], (2.4.3) p.19)

ζ(1− 2n) = (−)nBn/(2n).
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