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Our main interest is, of course, the case an = Λ(n), f(s) = −ζ ′(s)/ζ(s)
relevant to PNT. Recall: Λ(n) ≤ log n (II.7 L12: Λ(n) = log p if n = pm, 0
else), and (III.3 L19)

−ζ ′(1 + σ)/ζ(1 + σ) << 1/σ (σ > 0).

So we can apply the result withM(x) = log x, σa = 1, σ = 0, a = 1 to obtain

ψ(x) =
1

2πi

∫ c+iT

c−iT

−ζ
′(w)

ζ(w)

xw

w
dw +O

(x log x
T
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x
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1 +

x log T

T
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.

As log(2x) ∼ log x, the error term is

<< log x
( x
T

+
1

x
+

log T

T

)
.

This 3-term bracket can be replaced by a simpler 2-term one. We will take
x, T ≥ 2 below, so the 1/x term may (or may not) be small, and can be
replaced by ”1 +”. We then need the larger of x/T and log T/T when either
is large, and this is << x log T/T . Combining (”Perron for −ζ ′/ζ”):

Theorem 3. For x, T ≥ 2 and c := 1 + 1/ log x,

ψ(x) =
1

2πi

∫ c+iT
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w
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[
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T

])
.

This will be a key step in the proof of PNT with remainder.
Note. 1. The classical statement of Perron’s formula is: for A(x) :=

∑
n≤x an,

if

α(s) :=
∞∑
1

an/n
s(= s

∫ ∞

1

A(x)x−s−1dx) (σ > max(0, σc)),

then for σ0 > max(0, σc),

A(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)

xs

s
ds.

Passing from A to α in the first formula is a Mellin transform; passing from
α to A in the second is an inverse Mellin transform (Hjalmar Mellin (1854-
1933), Finnish mathematician, in 1902). This pair of formulae is analogous
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to those for the Fourier transform and the Laplace transform, to which they
are related. There are Stieltjes versions in all three cases.
2. The proof strategy is now clear. The x in PNT (in the forms ψ(x) ∼ x
or ψ(x) = x + O(.)) is the residue of −ζ ′(s)/ζ(s).xs/s at s = 1. The above
form of Perron’s formula suffices for the PNT itself, but a quantitative form
such as Theorems 1 or 2 above is needed for PNT with remainder.

2. Further Complex Analysis.
These results will be needed for the proof of PNT with remainder term.

The Gamma function.
We return to the Gamma function of I.7.

Stirling’s formula. Recall that for n ∈ N Γ(n + 1) = n! – the Gamma
function is a continuous extension of the factorial. Then (James STIRLING
(1692-1770) in 1730)

n! ∼
√
2πe−nnn+ 1

2 (n→ ∞).

In terms of the Gamma function,

Γ(x) ∼
√
2πe−xxx−

1
2 (x→ ∞).

We shall need an estimate for Γ(z) with z complex. Recall that Γ has poles
at 0,−1,−2, . . . but no zeros, so 1/Γ is entire (with zeros at 0,−1,−2, . . .).
For δ > 0, write Dδ := {z ∈ C : −π + δ < argz < π − δ, |z| > 1} (so we can
‘go off to infinity’ avoiding the poles on the negative real axis). Then

Γ(z) ∼
√
2πe−zzz−

1
2

(
1 +

1

12z
+

1

288z2
+ . . .

)
(z ∈ Dδ, |z| → ∞)

(the RHS is an asymptotic expansion). This yields an asymptotic expansion
for log Γ(z) (involving the Bernoulli numbers – see e.g. WW, 12.33), and
hence (all we shall need)

log Γ(z) = (z − 1

2
) log z − z +

1

2
log 2π +Oδ(1/|z|) (z ∈ Dδ). (St)

It can be shown that the error term here has derivative Oδ(1/|z|2) (as one
would expect). So differentiating, the error term is negligible, and one obtains
the complex Stirling formula

Γ′(z)/Γ(z) = log z +Oδ(1/|z|) (z ∈ Dδ). (St)

This logarithm occurs again in the zero-free region for ζ(s) (IV.3), and the
bound for −ζ ′/ζ (IV.4), and hence in our error term in PNT (IV.5).
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