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Lecture 32. 28.3.2014.
Proof of PNT with remainder (continued).

As the residue at s = 1 is x (as −ζ ′/ζ has a simple pole at 1 of residue
1), Cauchy’s Residue Theorem gives
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with P the polygonal path with vertices k ± iT, 1− c0/ log T ± iT . On P ,

−ζ ′(s)/ζ(s) << log T

(IV.4 L31). The horizontal parts have length

k − (1− c0/ log T ) =
1

log x
+

c0
log T

,

and on them xs/s is of order xσ/T (s = σ+ iτ with σ bounded and τ = ±T ;
|xs| = xσ << xk = ek log x = ex << x, as k = 1 + 1/ log x). So the horizontal
parts contribute
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log x
+

1

log T

)
.
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. log T =
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log x

)
<<

x log T
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For the vertical part, we split into |t| ≤ 1 and 1 ≤ |t| ≤ T . For the first, as T ,
log T are large (so the line is only just to the left of the 1-line), we are near
the simple pole of −ζ ′/ζ at 1 (of residue 1), so −ζ ′(s)/ζ(s) = O(1/(s− 1)).
So this integral is

I1 << x

∫ 1

−1

dt

|it− c0/ log T |
<< x log T.

For the second, we use −ζ ′/ζ << log T ; the integral is, writing
D := {s : σ = a := 1− c0/ log T , −T ≤ τ ≤ −1 or 1 ≤ τ ≤ T ,

I2 =

∫
D

−ζ
′(s)

ζ(s)
.
xs

s
ds << (log T ).xa

∫ T

−T

dt

1 + |t|
<< xa(log T )2.

So the vertical part is << xa(log T )2.
Choice of T .
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Throughout, x is as in PNT, and will → ∞; we will let T → ∞ also, but
can choose how fast. We choose

T := exp{
√
c0 log x} : log T =

√
c0 log x <<

√
log x;

log T

T
<<

√
log x. exp{

√
c0 log x} << exp{

√
c1 log x} (for all c1 < c0).

The second error term in ‘Perron for −ζ ′/ζ’ is now the dominant one. As x
grows more slowly than any exp{xa} for a > 0, log x grows more slowly than
any exp{(log x)a}. We can thus absorb the x log x and the (log T )/T above
into

x exp{−
√
c log x} (c < c1 < c0),

that is, for any c < c0.
Horizontal contributions:

<<
x log T

T
≤ x

√
log x

exp{
√
c0 log x

<< x exp{−
√
c log x}.

Vertical contributions:
<< xa(log T )2.

Now

xa = x.x−c0/ log T = x. exp{− c0
log T

. log x} = x. exp{− c0√
c0 log x

. log x} << x exp{−
√
c0 log x} :

xa(log T )2 = x log x. exp{−
√
c0 log x} << x exp{−

√
c log x}

for any c < c0, as above. Combining,

ψ(x)− x << x. exp{−
√
c log x}. //

Note. 1. As a very special case, the result above includes

π(x) = li(x) +O(x/log2x) = x/ log x+O(x/log2x).

There seems to be no quicker way to obtain this crude-looking form of PNT
with remainder than by spcialisation of the classical result proved above.
2. We used the clasical ZFR (Hadamard-de la Vallée-Poussin, 1896) here.
We mentioned above (IV.3 L30) the best ZFR known (Vinogradov, Korobov,
1958), proved by Complex Analysis as here. The best error term obtained
so far by elementary methods (not using Complex Analysis – see III.1) gives
O(x exp{−c logαx}) with α = 1/6−ϵ (Lavrik and Sobirov, 1973). By Turán’s
method (IV.3 L30), this still yields a non-trivial zero-free region (though not,
of course, as good as the classical one or the best-known one).
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