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Handout: Prime divisor functions; Landau’s Poisson extension to
PNT; Probabilistic Number Theory

Prime Divisor Functions
Recall the following arithmetic functions: d(n) := #divisors of n;

ω(n) := # distinct prime divisors n; Ω(n) := # prime divisors n
(counted with multiplicity). So if n = pr11 ...prkk , we have

d(n) =
k∏
1

(1 + rj), ω(n) = k, Ω(n) =
k∑
1

rj.

Theorem. (i)
∑

n≤x ω(n) = x log log x+ C1x+O(1/ log x),
(ii)

∑
n≤x Ω(n) = x log log x+ C2x+O(1/ log x),

where as above

C1 = γ +
∑

, C2 = C1 +
∑
p

1

p(p− 1)
= C1 + S,

say.
Proof. (i)

∑
n≤x ω(n) is the number of pairs (p, n) with p|n and n ≤ x. For

fixed p, the number of such pairs is equal to the number of multiples rp ≤ x,
i.e. [x/p]. So ∑

n≤x

ω(n) =
∑
p≤x

(
x

p
−
{
x

p

})
.

By the first theorem of II.7,∑
p≤x

x

p
= x

∑
p≤x

1

p
= x log log x+ C1x+O(x/ log x).

Also
0 ≤

∑
p≤x

{x/p} <
∑
p≤x

1 = π(x) = O(x/ log x),

by Chebyshev’s Upper Estimate (III.2). Combining gives (i).
(ii) Similarly. //

Note. This theorem gives us:

1

x

∑
n≤x

ω(n) = log log x+ C1 +O(1/ log x);
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1

x

∑
n≤x

Ω(n) = log log x+ C2 +O(1/ log x).

In Probabilistic Number Theory, one thinks of the LHS as the ’mean value’
of ω,Ω. This says that both ∼ log log x. This result, due to Hardy and Ra-
manujan (1917), corresponds to the Law of Large Numbers (LLN), thinking
of ω,Ω as random and divisibility by distinct primes as independent events.
We prove the Prime Number Theorem (PNT), and one can prove an ex-
tension of it, counting n ≤ x with k prime factors. This corresponds to the
relevant Central Limit Theorem (CLT), extending the Law of Large Numbers.

LANDAU’S POISSON EXTENSION OF PNT: PRIMES PLAY A
GAME OF CHANCE

Theorem (LANDAU 1900; Handbuch, 1909, 203-211). If πk(x) is the
number of n ≤ x with k distinct prime factors (k = 1, 2, . . .),

πk(x) ∼
x

(k − 1)!
.
(log log x)k−1

log x
.

Lemma (Handbuch, 203-5). For F (u, x) (2 ≤ u ≤ x) s.t.
(i) F (u, x) ≥ 0;
(ii) for fixed x > 2 F (u, x)/ log u decreases in u;
(iii) F (2, x) = o(

∫ x

2
F (u, x)du/ log u) – then∑

p≤x

F (p, x) ∼
∫ x

2

F (u, x)

log u
du.

Proof. By PNT, θ(x) ∼ x, so θ(x) = x+ xϵ(x), ϵ(x) = o(1). So∑
p≤x

F (p, x) =
x∑

n=2

θ(n)− θ(n− 1)

log n
F (n, x) (definition of θ)

=
x∑
2

F (n, x)

log n
+

x−1∑
2

nϵ(n)
[F (n, x)

log n
−F (n+ 1, x)

log(n+ 1)

]
+
F (2, x)

log 2
+[x]ϵ([x])

F ([x], x)

log[x]
,

(i)
by Abel summation. As in the Integral Test (I.4),

x∑
2

F (n, x)

log n
+

F (2, x)

log 2
= (1 + o(1))

∫ x

2

F (u, x)

log u
du.
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Choose ϵ > 0 arbitrarily small; there exists U = U(ϵ) with |ϵ(u)| < ϵ for
u > U . So for x > U + 1, the sum of the remaining terms on the RHS of (i)
is

|
n−1∑
2

nϵ(n)
[F (n, x)

log n
− F (n+ 1, x)

log(n+ 1)

]
+ [x]ϵ([x])

F ([x], x)

log[x]
|

< O(F (2, x)) + ϵ
n−1∑
U

[...] + ϵ[x]F ([x], x)/ log[x]

= ϵ
x∑
U

F (n, x)

log n
+O(F (2, x)) (by Abel summation again)

= ϵ

∫ x

2

F (u, x)

log u
du+ o(

∫ x

2

F (u, x)

log u
du).

This holds for all ϵ > 0, so LHS = o(
∫ x

2
F (u, x)du/ log u).

So LHS of (i) is
∑

p≤x F (p, x) = (1 + o(1))
∫ x

2
F (u, x)du/ log u. //

Proof of the Theorem. We prove the case k = 2 (Handbuch, 205-8):

π2(x) ∼ x log log x/ log x.

The general case follows by a similar but more complicated argument (Hand-
buch, 208-11), or by induction on k, an argument due to Wright (HW §22.18,
Th. 437, 368-71; J, 140-5).

π2(x) := #{n ≤ x : n has 2 distinct prime factors}

=
1

2
#{(p, q) : p, q distinct primes, pq ≤ x}

(1
2
because of (p, q) and (q, p)). But

∑
p≤x π(x/p) is the number of pairs with

p ̸= q, π(
√
x) the number of pairs with p = q. So by above

2π(x) =
∑
p≤x

π(x/p)− π(
√
x) =

∑
p≤x

π(x/p) +O(
√
x/ log x),

by PNT or Chebyshev’s Upper Estimate. We use the Lemma with

F (p, x) := π(x/p).
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For, conditions (i), (ii) are clear. As π(1
2
x) ∼ 1

2
x/ log 1

2
x ∼ 1

2
x/ log x, (iii)

will follow from the relation (∗) below:∫ x

2

π(x/u)

log u
du ∼ 2x log log x

log x
. (∗)

To prove (∗):∫ x

2

π(x/u)

log u
du =

∫ x/2

2

π(x/u)

log u
du (if u > x/2, x/u < 2, so π(x/u) = 0)

= x

∫ x/2

2

π(v)

log x− log v

dv

v2
(v := x/u: 2 ≤ u = x/v ≤ x/2, 2 ≤ v ≤ x/2).

Choose ϵ > 0; for v ≥ V = V (ϵ),∣∣∣π(v)− v

log v

∣∣∣ < ϵ
v

log v

by PNT. So for x > 2V ,

|
∫ x/2

V

π(v)

log x− log v

dv

v2
−
∫ x/2

V

v/ log v

log x− log v

dv

v2
| < ϵ

∫ x/2

V

v/ log v

log x− log v

dv

v2
,

so |
∫ x/2

2
...−

∫ x/2

2
...| < ϵ

∫ x/2

2
...+O(1/ log x), as∫ V

2

v/ log v

log x− log v

dv

v2
= O(1/ log x),

etc. Since∫ x/2

2

v/ log v

log x− log v

dv

v2
=

∫ log x−log 2

log 2

dw

w(log x− w)
(w := log v)

=
1

log x

∫ log x−log 2

log 2

( 1

w
+

1

log x− w

)
dw (partial fractions)

=
1

log x
(log(log x−log 2)−log log 2−log log 2+log(log x−log 2)) ∼ 2 log log x

log x
,

this gives (∗).
By the Lemma, π2(x) ∼ x log log x/ log x, proving the case k = 2. //
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As each n has at least one prime factor, it is better to work with k + 1
rather than k. Writing

λ := log log x

(so λ → ∞ as x → ∞ – though extremely slowly):

1

x
πk+1(x) ∼

(log log x)k

k! log x
=

e−λλk

k!
(k = 0, 1, 2, . . .) (λ, x → ∞).

Now {e−λλk/k! : k = 0, 1, 2, . . .} forms the Poisson distribution P (λ) of Prob-
ability Theory, with parameter λ (mean λ, variance λ). So:

Theorem (Landau). The proportion of primes ≤ x with k+1 distinct prime
factors is asymptotically Poisson distributed with parameter λ := log log x.

The Poisson distribution is ”the signature of randomness”, in the discrete
setting (as here). So this suggests that, in some sense, the primes are ran-
domly distributed (hence ‘Primes play a game of chance’ – see below). This
is very surprising: in the ordinary sense, nothing could be less random, or
more deterministic, or ”God-given”, than the primes.

Recall the prime divisor functions ω(n) is the number of distinct prime
divisors of n, Ω(n) is the number of prime divisors of n counted with mul-
tiplicity. As before, ω and Ω behave similarly here. So we may rephrase
Landau’s theorem above as saying that both proportions ω(n)/n, Ω(n)/n
are asymptotically Poisson distributed with parameter λ := log log n. Using
X ∼ F as the usual probabilistic shorthand for ”the random variable X has
the distribution (function) F”, we have

Theorem (Landau’s Poisson PNT, 1900).

ω(n)/n ∼ P (log log n), Ω(n)/n ∼ P (log log n).

With some loss of information (the constants C1, C2 and the error terms
O(x/ log x), we may summarise the results above for comparison. Using ∼
now (with a number after it, not a distribution) to denote ”is asymptotic
to”, one has

Theorem (Hardy and Ramanujan, 1917).

ω(n)/n ∼ log log n, Ω(n) ∼ log log n.
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Probabilistic Number Theory. The situation above is sumarised in:
Kac’s Dictum (Mark KAC (1914-84)): Primes play a game of chance;
Vaughan’s Dictum (R. C. VAUGHAN (1945-)): It’s obvious that the primes
are randomly distributed – it’s just that we don’t know what that means
yet1.

A short calculation (involving the probability generating function) shows
that ifX1, . . . , Xn are independent random variables, Poisson P (1) distributed,
then their sum is Poisson P (n) (means add; variances add over independent
summands; the point is that Poissonianity is preserved). This means that as
n → ∞, the Central Limit Theorem (CLT) applies: the sum is asymptotically
normally distributed, or Gaussian:

P (n) ∼ N(n, n)

(this statement can be made precise – it is all we need here). Since by
Landau’s Theorem of III.9 we know that ω(n)/n,Ω(n)/n ∼ P (log log n), this
gives

ω(n)/n,Ω(n)/n ∼ N(log log n, log log n).

This is the Erdös-Kac Central Limit Theorem of 1939 (Paul ERDÖS (1913-
96)).
Note. 1. The Erdös-Kac CLT was completed in 1939, during a seminar given
by Kac. Erdös was in the audience, and completed the proof by using sieve
methods, during the talk.
2. This result marks the ”official birth” of the subject of Probabilistic Num-
ber Theory, though as above the subject really goes back to Landau in 1900
and to Hardy and Ramanujan in 1917. For a textbook account, see e.g.
G. TENENBAUM2: Introduction to analytic and probabilistic number the-
ory, CUP, 1995.
3. Just as the Landau and Erdös-Kac results correspond to the CLT (”Law
of Errors”), the Hardy-Ramanujan result corresponds to the LLN ((Weak)
Law of Large Numbers – ”Law of Averages”). For background, see e.g. my
homepage, link to Stochastic Processes (II.7 L12).

1My wife’s instant response to this:
(Cecilie) Bingham’s Dictum: Primes play a game of chance – we just don’t know the rules
yet.

2Through my 1986 paper with Tenenbaum, I have my Erdös number of 2 (Erdös had
Erdös number 0, his collaborators Erdös number 1, etc.)
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