M3PM16/M4PM16 EXAMINATION 2012

Four questions, 20 marks per question

Q1. With \sum_{p} denoting a sum over all primes p, show that

- (i) $\sum_p 1/p$ diverges;
- (ii) $\sum_{p} 1/(p \log p)$ converges.

Q2. Show that

- (i) there are arbitrarily long gaps between primes;
- (ii) there are infinitely many primes of the form 4n + 3;

(iii) there are infinitely many primes of the form 6n + 5.

(iv) State without proof the Bertrand postulate.

Q3. (i) Show how to continue the zeta function $\zeta(s) := \sum_{n=1}^{\infty} 1/n^s$ analytically from $Re \ s > 1$ to $Re \ s > 0$, and show that it has a simple pole at s = 1 of residue 1.

(ii) Show that $\zeta(2) = \pi^2/6$.

Q4. Write d(n) for the number of divisors of a natural number n and set $D(x) := \sum_{n \le x} d(n)$ for each real number x. Show that (i) $\sum_{n=1}^{\infty} d(n)/n^s = \zeta(s)^2$ (Re s > 1);

(ii) $D(x) = x \log x + (2\gamma - 1)x + O(\sqrt{x}) \ (x \to \infty),$

where γ denotes Euler's constant.

N. H. Bingham