m3pml6examsoln(14).tex

M3PM16/M4PM16 EXAMINATION SOLUTIONS 2014

Q1 (HW §§5.5, 16.1,2, J, 68-9, A, §62.3 - 2.5). (i) Using |.| for cardinality,
we partition the set S := {1,2,...,n} as a disjoint union of the sets A(d)
containing those elements k of S whose ged with n is d. So Y7 |A(d)| = n.
But (k,n) = d iff k/d and n/d are coprime, and 0 < k < niff 0 < k/d < n/d.
So if ¢ := k/d, there is a one-one correspondence k <> ¢ = k/d between
the elements of A(d) and the integers ¢ with 0 < ¢ < n/d with ¢ and n/d
coprime. The number of such ¢ is ¢(n/d) (definition of ¢). So

Zqﬁ(n/d) =n:
dn

Zgb(d):n: I=¢x*u. (6]
dln
(ii) Since p and u are convolution inverses, this gives
ITxp=c¢xuxp=ao: => w(d)I(n/d)=> p(d).n/d. 3]
dn dn
(iii) Since p and I are multiplicative, so is ¢ = p * I. [2]

(iv) Taking Dirichlet series, as p(n), I(n) = n have Dirichlet series 1/((s) =
S un)/n, ((s—1) =X n/n® =32 1/n*"1, this gives the Dirichlet series
of ¢ as

Z¢ )/n° = ((s = 1)/¢(s)- [4]

(v) Being multiplicative, gzﬁ is determined by its values on prime powers p°,
as prime powers of distinct primes are coprime. There are p¢ — 1 positive
integers < p, of which the multiples of p are p,2p,...,p° —p (so p° ! — 1 of
these), and the rest are coprime to p°. So

o(p) =" —1)— (" =1) =p°—p~ ' =p°(1 -

)-

1
p
i) gives

So if n =[] p© is the prime-power factorisation of n (FTA), (
=[Tow") =11»°11( 1—]; =n]JC1 // [5]
pn
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Q2. (i) Mertens’ Second Theorem: °,.,1/p = loglogz 4 C; + O(1/log x)
for some constant C4. [3]
(ii) Mertens’ Second Theorem for prime powers:

> 1/p" =loglog z+Co+0(1/logx), Cy = C1+5S, S =

pn<z P p(p - 1)

Proof. Write ¢ := p" for a generic prime power, and for primes p with p? < z
let 7, be the largest ‘relevant power’ (largest r with p” < z). Then

A=>1/g=> 1/p= > il/pr.

<z p<z p<ET=2

But >5°1/p. = 1/(p(p — 1)), summing the GP, so

(above). With
1

Spi= S -
pg%,;p(p— 1)
p>\/T n>\f
1 ( 1 1 1 tol )
— _ — — m
NG W=D n-1 n sum telescopes

<2/\/x. [10]

Asprp+1>x
1 1 1 1 1
— < (At St )= <2/ (p>2)
; R N z(1—1/p)

So (as m(x) =Y, 1 <X, 1 < 1)
So—A= Y XUy < n(Va)2/e <2V
p<VT T>Tp
Combining, S — A <4//x = O(1/log x). [4]
So the difference A in the sums here and in Mertens’ Second Theorem is

S+0(1/log ), and the result follows from Mertens’ Second Theorem. // [3]
[Seen — Mock Exam 2012; similar to Mertens’ Second Theorem, lectures.



Q3. (i) For ¢, 0. =0, =1; forn, 0, =0, 0, = 1. [2]

(H> 77(0) = Z;.Lozl(_)n_l/ng = Zodd 1/TLU - Zeven 1/71;0 = Zo - Ze?
say. Now >, =>7°1/(2n)? =27737°1/n? =279((0). So

(o) =3 =3 =2-270), (o) =3 +> =3 +27((0).
Subtract: n(o) — ((0) = —2.279¢(0) = —2'77¢(0):
o) =(1-2"")¢0): (o) =1 -2 (=)" % (%)

Note that the series on RHS converges in ¢ > 0, by the Alternating Series
Test. Now let s be complex, and define

C(s) :=m(s)/(1=2"7") = O (=)""/n*) /(1 — el 7o)82), (%)

As n(s) has o, = 0, the first factor on RHS is holomorphic in ¢ > 0 (the
second is holomorphic as 27° = e7*1°¢2 is). So we may use (x) to continue
¢(s) analytically from ¢ > 1 to o > 0. [6]
(1) Yodd > Deven (compare corresponding terms). So 7(c) has no zeros
in o € (0,1). So ((0) has none either: any zeros of { in the critical strip
0 < o <1 are non-real. [2]
(iv)Near s = 1, 1 — 2'75 = 1 — 179182 — (5 — 1)log2 + O((s — 1)?). As
n(1l) = log2, given, log2 cancels in (xx) to give ((s) ~ 1/(s — 1): ((s) is
holomorphic in Res > 0 except for a simple pole at 1 of residue 1. //  [3]
(V) C(0)=—=%;¢(—2n) =0 (n=1,2,...).
Proof. T has a simple pole at 0 of residue 1; ( has a simple pole at 1 of
residue 1. So near s =0, (FE) and I'() = /7 give

2 1 1 1 1 1

G~ = TGH) =~ (0=, 2]
The RHS of (FE) is holomorphic at s = 2n. The LHS contains a (simple)
pole from I'(—3s), so this must be cancelled by a (simple) zero of ¢: ((—2n) =
0. (The zeros of ¢ at —2n are called the trivial zeros.) [2]
(vi) All zeros of ¢ other than the trivial zeros lie in the critical strip 0 < o < 1.
Proof. The RHS of (FE) is holomorphic in ¢ > 1, and non-zero there (there
are no zeros in o > 1 by the Euler product, and none on the 1-line, given). So
the LHS of (F'E) is holomorphic and non-zero in ¢ < 0. But the only poles
of I" are 0,—1,...,—n,.... So the only zeros of ( in ¢ < 0 are the trivial
zeros that cancel these. The remaining zeros are in the critical strip.  [3]
[Seen in lectures, except for (iii), unseen.]
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Q4. (i). With v(n) := p(d) if n = d? is a square, 0 otherwise:

Given n, extract from n the product of its prime factors raised to their highest
even power. This is a square, m? say, and then n = m?q, with ¢ a product of
distinct primes (those occurring in n with odd multiplicity). So |u|(q) =
So |u(n)| = e(m), since if m = 1, n = ¢, so |u(n)| = |u(g)| = 1, while if
m > 1, n has a square factor, so both sides are 0. But u*u = e, so

) = e(m) =Y p(d) = Y uld)  (dm iff @|n)

dlm d?|n
= Y v(d) (definition of v)
d?|n
= Y v(d) (v(d) = 0 if d is not a square).
dln
So |u| = v*u. Or: |u| = p?* = Ig has Dirichlet series ((s)/¢(2s) (I1.7 L11);
u has Dirichlet series ((s); v has Dirichlet series 1/((2s) (check). [6]

(i) For integers n < y2, let S(d) be the set of n with biggest square factor
d?. So S(1) is the set of square-free n < y*. Then

1S(d)| = Qy*/d*) -
for n € S(d) iff n = d*m < y? with m square-free, i.e. m < y?/d? is square-
free, and there are Q(y?/d?) such m, so this many n = d*m
As Q(z) = 0 for x < 1, Q(y*/d?) = 0 for d > y, i.e. S(d) is empty for
d > y. So as the S(d) form a partition of {n < y?},

=2 QUY/d):  l]= > Q/m?). [6]

d<y m<\/z
(iii) By Mobius inversion of (i), Q(x) = X,,< /z p(m)[z/m?]. [2]
(iv) Write [.| =. —{.} = .+ O(1):
=Y pd)(y*/d>+0(1) =y Z“ (d)/d* + O(y* > 1/d*) + O(y),

as |p| < 1. For large y, Ygo, 1/d* ~ [ dx/2*> = 1/y. So both error
terms are O(y), and we can combine them. As p has Dirichlet series 1/(,
S, 1/d? =1/¢(2). But ¢(2) = 7%/6 (Euler: Basel problem), so

QW)= 50 +0W): QU= e +OWE).  //d
[Seen — Problems] N. H. Bingham



