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Now use the Integral Test argument (I.4) to estimate S(z). As
/ logtdt = xlogx —x + 1
1

(integrate by parts), this gives
S(z) =xzlogx — z + b(x), |b(x)| <logx+ 1.
Now logx+1 < z for x > 1 (integrate 1/z < 1 over [1,z]). So |b(z)| < x. So

T A(n)/n = S(x)+ a(z) = zlogx — x + a(z) + b(z).

n<x

But 0 < a(z) <2z, |b(x)| <z, so |a(x) —z + b(z)| < 2x. //

Cor.

“Y(t)
/1 t—th =logz + O(1) (x> 1)
Proof. Integrating by parts (or by Abel summation (I1.3)),

A [ o), [0

1,z t2

But ¢(x)/z is bounded (from Chebyshev’s #-function: II1.2), so this follows
from the Theorem. //

dt.

1

}diﬂ(x)/x =

The next result shows that we can neglect the powers of primes in the
Theorem (at the cost of losing the bound 2): powers of primes become sparse,
so this is not too surprising.

Theorem (Mertens’ First Theorem: F. MERTENS (1840-1927) in 1874,
HW Th. 425).

Zpggclogp/p:logx—i—O(l) (x>1) (100 < 4).

Proof. As A(n) = logp when n = p™,

0<> ., Am/n=3_ logp/p=> logp/p—>  _logp/p
p

m<g

1



—ZZIng/p<Z logp( +pl+ )

m>2pm<zx

Summing the geometric series, the RHS is

log p oo logn
< %

r<ep(p
(convergent, to sum < 2 — check), giving the result by the Theorem above. //

Theorem (Mertens’ Second theorem; HW Th. 427).
Z - 1/p =loglogz + Cy + O(1/log x) (x > 2),
pPST

for some constant C}.

Proof (Compare Y _ 1/n=logx + v+ o(1), 1.4). Write

n<x
a(n) :=logn/n (n prime), 0 otherwise, A(z) = Z _ an
(so a(1) = 0). By Mertens’ First Theorem,

A(z) =logz + r(x), ()] < ¢o (x> 1),

a(n) B
and Zml/ ZMOgn = /M dA(u)/logu = /[2 ; dA(u)/ logu.

Integrating by parts (or by Abel summation), this gives
A(x) AL r(z) /”” dt
1/p=——= —5-dt =1 — 41T
Zpgx /p log:c+/2 t log*t +10g3:+ 9 tlogt+ (z),
v t
I(z) ::/ rl )_at
o tlog“t

c1 o dt 1 d/ 1
dt = loglog x—loglog 2, 5 < 00, as = __<_
9 tlogt o tlog™t t log“t dt

So I(x) — I, finite, as x — oo, and

I(z) = I — s(x), \s(x)|gc0/°° dt

t log*t logx

But

Co

This gives the result with Cy := 1 —loglog2+ 1. //



