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LEMMA 1.

ZA E(z/j) = Zlogk—QZlogk (x >2).

i<z k<z k<z/2

Proof. With E(z) =3 _ (1*v)(n) as above,

S—ZA E(z/5) = ZZA(j)(l*V ZA (1xv)(

J<z J<z k<z/j jk<xz
= > [Ax(1#v)](n)  (definition of x)
n<x
= S (sv)n)  (Ax1=0)
n<x
= Zu(j) Z log k (as above)
i<z k<z/j
= ) logk—2) logk (z>2). //
k<z k<z/2
LEMMA 2.
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Proof. Take x =2nin L. 1. As E(.) <1, 5 < 3 ., A(j) = ¢(2n). But

Si=> logk—2 Y logk = Z log k— Zlogk 1og< n—|—1)1(7l2+2)

k<z k<z/2 k=n+1

— o (). /)

Th. 3 (Chebyshev’s Lower Estimates). For ¢ > 0 and z large,

(i) ¥(z) > (log2 — €)x; (ii) 6(z) > (log2 — €)z; (iii) 7(z) > (log2 — €)li(x).

(2n))

Proof. (i) Let N := (*") as above. This is the largest of the 2n + 1 terms

in the binomial expansion of (1 + 1)?" = 2?" (by Pascal’s triangle), so 2" <

(2n 4+ 1)N. So 2nlog2 < log N + log(2n + 1), and Lemma 2 gives
Y(2n) > log N > 2nlog2 — log(2n + 1).
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Given z, take n with 2n <z < 2n + 2. Then (i) follows as
$(@) = $(2n) = (z - 2)log2 — log(x + 1),

(ii): from (i) as (¢¥(z) — O(x))/x — 0;

(iii): from (ii) by the first Theorem of this section. //

Cor. 5. w(x) > (log2 — €)z/log x.

Proof. (x) < w(z)logx (first Prop. of this section and (i). //

THEOREM (Chebyshev, 1849-51) (Mastery Question, 2013).
¢ :=liminf w(x)/li(x) <1 <limsupn(z)/li(z) =: L.
In particular, if the limit exists, it is 1 (as in PNT).

Proof. For all € > 0 there exists xo such that for x > x

m(x) 7(x)

{—e<

< L+e.
~ xz/logx’ z/logx e

For the lower bound, integration by parts gives, as 0 < m(u) < u,

1 L[ dv) _w(a) m(x) [Tl
D D T

p<z zo<p<w

T m(t) Todt
> — > — > —
> 1+/mO 5 dt > —1+ (¢ e)/zo Togt = (¢ —€)loglogx 4+ O(1)

(J*dt/(tlogt) = [ dlogt/logt = loglogx). But by Mertens’ Second Th.,
Z 1/p=loglogz + ¢; + O(1/logx).
p<z

Combining,

loglogz + ¢1 + O(1/logx) > (£ — €)loglog x + O.(1) : 1>0—e

This holds for all € > 0. So ¢ < 1. The upper bound is similar but simpler. //

In 1851, Chebyshev also proved Bertrand’s postulate of 1845: for any
n > 2 there is a prime p between n and 2n; see 2013 Problems and Solutions
8 for Erdos’ elementary proof of 1932.



