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3. Analytic continuation of (.
In Euler’s summation formula (1.9, L5), take f(z) = 1/2°. Then

Yo fla) =) 1/n" =((s),
[wf(x)dx:/loodx/xszl/(s—l) (Re s > 1),

and 1.9 gives
1 *x— 2]
C(S):S_1+1_S 1 xs—l—l

As 0 < x — [z] < 1, the Dirichlet integral (see II.1)

* a4
/1 s+l dx
converges, to I(s) say, for s = o +1it, 0 > 0, and |I(s)] < 1/o. As in IL1,
I(.) is holomorphic, and

I'(s) = _/10o wdﬂ

s+l
So we can use (x) to extend ((s) from Re s > 1 to Re s > 0. This gives:

Theorem. The function ((s) defined by (*) is holomorphic in Re s > 0
except for a simple pole of residue 1 at 1:

()= 7 +14n0) @)l <)o

L [Ta—fa], % (@ [])logx
R /1 x8+1d+/1 =E

) = i) ri == [ EEEEan i) < /2o



Proof. Replace z — [z] by x — [z] — & (or use version (ii) of Euler’s summation
formula, 1.9). //

The integral here converges for Re s > —1, so the Cor. can be used to
continue ¢ analytically to Re s > —1. Repeated integration by parts can be
used to continue analytically further to Re s > —2,—3,..., —n, ..., and so to
the whole complex plane. This involves the Euler-Maclaurin sum formula.
See e.g. G. H. HARDY, Divergent Series, OUP, 1949, §13.10 Th. 245.

A better way to continue ( is via the functional equation (I11.7, 1.23-24)

C(s) = 2°7°7T(1 — s) sin %7&9 C(1—1s) (FE)

(Riemann, 1859) — but we shall not need this to prove PNT (we prove it in
I1.7 L24-5, for interest and use in Ch. IV).

Cor.

¢(s) =

s—1

C(s) — ! —>1—/100x_[$]da: (s —=1)

= (L.8 Cor., L5). //
So (¢ can be expanded about s = 1:

1 - 1 -
((s) = 8_—14—’}/4—2 cn(s—1)" ('(s) = G- 1)2+cl chn(s—l)”_l.
n=1 2

Also ((s) = g(s)/(s — 1), g holomorphic (actually, entire). So

I s—1 /(g _g(s)  g(s)
RO ONE A= el
Cs) _ gls) 1 1
_C(S)__g(s)+S_1_S_l—ao—al(s—l)—...,say.
Cor. , |
_Cg((j)):S_l—y—i——al(s—l)%—....

Proof. (—=('/¢).¢ = —¢’. Multiply up and equate coefficients of 1/(s — 1).
This gives —y + a9 =0. So ag =7. //



