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IV. PNT WITH REMAINDER

1. Perron’s formula.
There is an analogy between power series and Dirichlet series (though

this is not exact: a power series has the same circle of convergence and of
absolute convergence, while a Dirichlet series may have different half-planes
of convergence and absolute convergence). We may recover the coefficients of
a power series from the power series by Cauchy’s Integral Formulae (M2PM3
II.6, L20). There is an analogous formula for Dirichlet series (Oskar Perron
(1880-1975) in 1908). We follow Titchmarsh [T] 3.12, [MV], 5.1, [A], §11.12.

We use the following notation:

f(s) :=
∞∑
1

an/n
s

is a Dirichlet series, with abscissae of convergence σc and of absolute con-
vergence σa. We extend a : n 7→ an by setting it to be 0 unless n ∈ N, and
define its normalised sum-function by

A∗(x) :=
∑
n≤x

an +
1

2
ax (x ≥ 0)

(this use of ‘half the last value if present’ is reminiscent of the Gibbs phe-
nomenon for Fourier series). The Heaviside function is the unit jump-function
H(x) := 0 on (−∞, 0), 1 on [0,∞)); we write h for its variant

h(x) := 1 (x > 1),
1

2
(x = 1) 0 (0 < x < 1).

When convergent, we write
∫ c+i∞
c−i∞ for limT,U→∞

∫ c+iT

c−iU
.

Lemma 1. (ii) For x > 0,

1

2πi

∫ c+i∞

c−i∞
xsds/s = h(x).
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(ii)

|h(x)− 1

2πi

∫ c+iT

c−iU

xsds/s| ≤ xc

2π| log x|

( 1

U
+

1

T

)
(x ̸= 1);

|h(1)− 1

2πi

∫ c+iT

c−iT

ds/s| ≤ c

πT
.

Proof. First, take x > 1. For k > c a sufficiently large integer, write b :=
k − c > 0, Rc for the rectangle with vertices c− iU, c+ iT,−b+ iT,−b− iU
(draw a diagram!). Now xs = es log x = 1+ s log x+O(|s|2) as s → 0, so xs/s
has a simple pole at 0 of residue 1. So by CRT,

2πi =
(∫ c+iT

c−iU

+

∫ −b+iT

c+iT

+

∫ −b−iU

−b+iT

+

∫ c−iU

−b−iU

)
xsds

s
:

1

2πi

∫ c+iT

c−iU

xsds/s− 1 =
1

2πi

(∫ c+iT

−b+iT

+

∫ −b+iT

−b−iU

+

∫ −b−iU

c−iU

)
xsds/s.

We estimate the three integrals on the right. Recall |xs| = xσ. In the first
integral, s = σ + iT ; |s| ≥ T , |1/s| ≤ 1/T )

|
∫ c+iT

−b+iT

xsds/s| ≤
∫ c

−b

xσdσ/T | ≤ 1

T

∫ c

−∞
xσdσ

=
1

T

∫ c

−∞
eσ log xdσ =

1

T
[
eσ log x

log x
]c−∞ =

xc

T log x
.

In the second, s = −b+ iy, −U ≤ y ≤ T ; |s| ≥ b, 1/|s| ≤ 1/b:

|
∫ b+iT

−b−iU

xsds/s| ≤ |
∫ T

−U

xs idt

it
| ≤ (T + U)x−b/b.

The third is similar to the first, and gives the upper bound xc/(U log x).
The case 0 < x < 1 is similar.
For x = 1, the integral may be evaluated explicitly as a tan−1:∫ c+iT

c−iT

ds/s =

∫ T

−T

idy

c+ iy
=

∫ T

−T

y

c2 + y2
dy+ ic

∫ T

−T

dy

c2 + y2
= 2ic

∫ T

−T

dy

c2 + y2

(the other integral vanishes: odd integrand, symmetric limits). So

1

2πi

∫ c+iT

c−iT

ds/s =
c

π

∫ T

0

dy

c2 + y2
=

1

π
arctan(T/c) =

1

2
− 1

π
arctan(c/T ),

giving the result as tan θ > θ, arctan θ < θ on (0, π/2). //
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