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We can also estimate I' in vertical strips. For this, only the leading term
273 = exp{(z — ) logz} in Stirling’s formula matters, and only large ¢
matters. One obtains:

I'lo +it)| <<, t|P-2e 27 a<oc<pg t>1):
B

(z — $)logz| = (0 — )logr — 6t; as ¢ — oo, r ~ ¢, § 1 3w, so this is
<< log(t?~2.e72™),
Entire functions of order 1.

Hadamard, in the course of his proof of PNT using Complex Analysis in
1896, developed a theory of factorization of entire functions. This is standard
Complex Analysis (see e.g. Titchmarsh [T2], 8.24 or Ahlfors [Ahl], 5.3.2)
rather than Number Theory, so we shall quote what we need. The order of
an entire function f is the least a for which

[f(2)] = Os(exp{lz|**})  (lz] = o0).

We shall only need the case of order 1, and that only for I' and (. Hadamard’s
factorization theorem for entire functions f of order 1 states that
(i) f can be written as

f(z) = 2T - 2/p)e7Y,

p#0

where 7 is the order of the zero at 0 (if any), A, B are constants, and p runs
through the other zeros (if any);
(i)

Z|p|_1_6<oo Vo> 0.

p#0
Taking § = 1 in (ii) gives > |p|™2 converges, whence the product in (i)
converges. The proof involves Jensen’s formula from Complex Analysis.

We have already met two instances of this, the product for sin (Problems

6 Q3) and Weierstrass’s product definition of I' (I.7), and we meet a third,
for ¢, £ below.

Partial fraction expansion. Take logs and differentiate:
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Recall the entire function £(s) := s(1 — s) % T'(1s)¢(s) (IL.7 L24) (for
which £(s) = £(1 — s)). One can show ([MV], §10.2) that £ is of order 1. So
(Hadamard)

=P T = s/p)e ), €(s)/8(5) B+Z{—+ b

p#0

where p runs over the zeros of ¢. Similarly, (FE) (H.7) gives

¢'(s) 1 1 1F’(—S—|— 1) 1 1
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We quote ([AL], or [T2], §5.5):

Theorem (Maximum Modulus Principle). If f is holomorphic inside
and on a contour I', and |f| < M on T, then |f| < M inside I — unless f is
constant, = M.

Theorem (Schwarz’s Lemma). If f is holomorphicin |z| < R, |f(2)| < M
on |z| = R and f(0) = 0, then
|f(re®)| < Mr/R (0 <r<R).
The next result uses a one-sided upper bound on the real part to get an
O- bound on the (maximum) modulus. This will be crucially useful applied to

—('/¢ (IV.4) ((x%) L31, and L32). It is due to Borel in 1897, Carathéodory
(according to Landau in 1908).

Theorem (Borel-Carathéodory Inequality) ([T2] 5.5, [MV] 6.1). If f is
holomorphic in |z| < R,

M(r) := sup{|f(2)] - [2| <},

A(r) :==sup{Re f(2) : |z] <7}

2r R +7r
<
M) < 2 AR) +

— then

SO (0<r<R).

Proof. The result holds if f is constant, so suppose f is not constant.
[. If f(0) =0. Then A(R) > A(0) = 0. Write
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