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We can also estimate Γ in vertical strips. For this, only the leading term
zz−

1
2 = exp{(z − 1

2
) log z} in Stirling’s formula matters, and only large t

matters. One obtains:

|Γ(σ + it)| <<α,β |t|β−
1
2 e−

1
2
πt (α ≤ σ ≤ β, t > 1) :

|(z − 1
2
) log z| = (σ − 1

2
) log r − θt; as t → ∞, r ∼ t, θ ↑ 1

2
π, so this is

<< log(tβ−
1
2 .e−

1
2
πt).

Entire functions of order 1.
Hadamard, in the course of his proof of PNT using Complex Analysis in

1896, developed a theory of factorization of entire functions. This is standard
Complex Analysis (see e.g. Titchmarsh [T2], 8.24 or Ahlfors [Ahl], 5.3.2)
rather than Number Theory, so we shall quote what we need. The order of
an entire function f is the least a for which

|f(z)| = Oδ(exp{|z|a+δ}) (|z| → ∞).

We shall only need the case of order 1, and that only for Γ and ζ. Hadamard’s
factorization theorem for entire functions f of order 1 states that
(i) f can be written as

f(z) = zreA+Bz
∏
ρ ̸=0

{(1− z/ρ)ez/ρ},

where r is the order of the zero at 0 (if any), A,B are constants, and ρ runs
through the other zeros (if any);
(ii) ∑

ρ ̸=0

|ρ|−1−δ < ∞ ∀ δ > 0.

Taking δ = 1 in (ii) gives
∑

|ρ|−2 converges, whence the product in (i)
converges. The proof involves Jensen’s formula from Complex Analysis.

We have already met two instances of this, the product for sin (Problems
6 Q3) and Weierstrass’s product definition of Γ (I.7), and we meet a third,
for ζ, ξ below.
Partial fraction expansion. Take logs and differentiate:

f ′(z)/f(z) = ρ/z+B+
∑
ρ ̸=0

{1

ρ
− 1/ρ

(1− z/ρ)

}
= ρ/z+B+

∑
ρ ̸=0

{1

ρ
+

1

(z − ρ)

}
.
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Recall the entire function ξ(s) := 1
2
s(1− s)π− 1

2
sΓ(1

2
s)ζ(s) (II.7 L24) (for

which ξ(s) = ξ(1− s)). One can show ([MV], §10.2) that ξ is of order 1. So
(Hadamard)

ξ(s) = eBs
∏
ρ ̸=0

{(1− s/ρ)es/ρ}, ξ′(s)/ξ(s) = B +
∑
ρ̸=0

{1

ρ
+

1

(s− ρ)

}
,

where ρ runs over the zeros of ζ. Similarly, (FE) (II.7) gives

−ζ ′(s)

ζ(s)
= −B +

1

s− 1
− 1

2
log π +

1

2

Γ′(1
2
s+ 1)

Γ(1
2
s+ 1)

−
∑
ρ

( 1

s− ρ
+

1

ρ

)
.

We quote ([AL], or [T2], §5.5):

Theorem (Maximum Modulus Principle). If f is holomorphic inside
and on a contour Γ, and |f | ≤ M on Γ, then |f | < M inside Γ – unless f is
constant, ≡ M .

Theorem (Schwarz’s Lemma). If f is holomorphic in |z| ≤ R, |f(z)| ≤ M
on |z| = R and f(0) = 0, then

|f(reiθ)| ≤ Mr/R (0 ≤ r ≤ R).

The next result uses a one-sided upper bound on the real part to get an
O- bound on the (maximum) modulus. This will be crucially useful applied to
−ζ ′/ζ (IV.4) ((∗∗) L31, and L32). It is due to Borel in 1897, Carathéodory
(according to Landau in 1908).

Theorem (Borel-Carathéodory Inequality) ([T2] 5.5, [MV] 6.1). If f is
holomorphic in |z| ≤ R,

M(r) := sup{|f(z)| : |z| ≤ r},
A(r) := sup{Re f(z) : |z| ≤ r}

– then

M(r) ≤ 2r

R− r
A(R) +

R + r

R− r
|f(0)| (0 < r < R).

Proof. The result holds if f is constant, so suppose f is not constant.
I. If f(0) = 0. Then A(R) > A(0) = 0. Write

g(z) :=
f(z)

2A(R)− f(z)
.
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