m3pm16l9.tex

Lecture 9. 29.1.2015

Lemma. If $A(x) := \sum_{n \le x} a_n$, $B(x) := \sum_{n \le x} b_n$,

$$\sum_{n \le x} (a * b)(n) = \sum_{jk \le x} a_j b_k = \sum_{j \le x} a_j B(x/j) = \sum_{k \le x} b_k A(x/k).$$

Proof.

$$\sum_{n \le x} (a * b)(n) = \sum_{n \le x} \sum_{jk=n} a_j b_k = \sum_{jk \le x} a_j b_k = \sum_{j \le x} a_j \sum_{k \le x/j} b_k = \sum_{j \le x} a_j B(x/j),$$

and symmetrically. //

Defn. Call a multiplicative if a(.) is not $\equiv 0$ and

$$a(mn) = a(m)a(n)$$
 for $(m, n) = 1$

 $((m,n) = \gcd \text{ of } m \text{ and } n: (m,n) = 1 \text{ means } m, n \text{ are } coprime - \text{ have no common factors}).$

Call a completely multiplicative if it is not $\equiv 0$ and

$$a(mn) = a(m)a(n) \quad \forall m, n.$$

Propn. (i) If a is multiplicative, a(1) = 1.

(ii) If a, b are multiplicative, so is a * b.

Proof. (i) As (n, 1) = 1 for all n, a(n)a(1) = a(n). As a is not $\equiv 0$, $a(n) \neq 0$ for some n. Then cancelling gives a(1) = 1.

(ii) Take m, n with (m, n) = 1. As m, n have no common factors, every divisor r of mn is uniquely expressible as r = jk with j|m and k|n. Then also j, k have no common factors, so (j, k) = 1. Similarly, (m/j, n/k) = 1.

$$(a*b)(n) = \sum_{r|mn} a(r)b(mn/r) = \sum_{j|m} \sum_{k|n} a(jk)b(\frac{m}{j} \cdot \frac{n}{k}) = \sum_{j|m} \sum_{k|n} a(j)a(k)b(\frac{m}{j})b(\frac{n}{k})$$

(as both a and b are multiplicative)

$$= (a * b)(m)(a * b)(n).$$
 //

Cor. If f is multiplicative, so is F := f * u: $F(n) = \sum_{d|n} f(d)$.

There is a converse: if $F(n) = \sum_{d|n} f(d)$ is multiplicative, so is f (Problems 5, Q3).

§5. Euler Products

Throughout, write p for a prime, P for the set of primes,

Theorem (Euler). If a is completely multiplicative with $|a_n| < 1$ and $\begin{array}{l} \sum_{1}^{\infty} |a_{n}| < \infty, \text{ then} \\ \text{(i) } \sum_{1}^{\infty} a_{n} \neq 0; \\ \text{(ii) } \sum_{1}^{\infty} a_{n} = \prod_{p} 1/(1 - a_{p}). \end{array}$

(ii)
$$\sum_{1}^{\infty} a_n = \prod_{p} 1/(1 - a_p)$$
.

Proof. By I.5, $\prod_{p}(1-a_p)$ converges to a non-zero (finite) value (as $\sum |a_n|$ ∞); thus so does $\prod_{p} 1/(1-a_p)$.

Fix N; write P[N] for the set of primes $p \leq N$, E_N for the set of integers with all prime factors in P[N], E_N^* for the remaining natural numbers,

$$T_N := \prod_{p \in P[N]} 1/(1 - a_p) = \prod_{p \in P[N]} (1 + a_p + a_p^2 + \ldots).$$

Multiply out. Each $n \in E_N$ appears on RHS exactly once, by FTA (I.1). So

$$T_N = \sum_{n \in E_N} a_n.$$

As $\{1, 2, ..., N\} \subset E_N$, $E_N^* \subset \{N + 1, N + 2, ...\}$, so

$$|\sum_{1}^{\infty} a_n - T_N| = |\sum_{n \in E_N^*} a_n| \le \sum_{n > N} |a_n| \to 0 \qquad (N \to \infty).$$
 //

The special case $a_n \equiv 1/n^s$ is so important we give a self-contained proof:

Theorem (Euler). $\zeta(s) = \prod_{p} 1/(1 - 1/p^s) \ (Res > 1)$.

$$RHS = \prod_{p} (1 + p^{-s} + p^{-2s} + \dots) = \sum_{k, p_1, \dots, p_k} p_1^{-n_1 s} p_2^{-n_2 s} \dots p_k^{-n_k s} = \sum_{n} n^{-s} = \zeta(s)$$

by FTA, as each $n = p_1^{n_1} \dots p_k^{n_k}$, uniquely. //