m3pm16prob6.tex

M3PM16/M4PM16 PROBLEMS 7. 26.2.2015

Q1 Prime divisor functions. The prime divisor functions Ω , ω count the prime divisors with and without multiplicity: if $n = p_1^{r_1} \dots p_k^{r_k}$,

$$\Omega(n) := r_1 + \ldots + r_k, \qquad \omega(n) := k.$$

Show that $(-1)^{\Omega}$ is completely multiplicative and $(-1)^{\omega}$ (note: $\mu = (-)^{\omega}$) is multiplicative.

Q2 The Liouville function λ . This is defined by $\lambda := (-)^{\Omega}$:

$$\lambda = (-)^{\Omega}, \qquad \mu = (-)^{\omega}$$

(so $\lambda(p) = -1$, and λ is completely multiplicative, by Q1). Show that: (i) λ has Dirichlet series

$$\sum_{n=1}^{\infty} \lambda(n)/n^s = \zeta(2s)/\zeta(s);$$

(ii) λ is the convolution inverse of $|\mu|$:

$$\lambda * |\mu| = \delta.$$

Q3. Define ν by $\nu(n) := \mu(d)$ if $n = d^2$, 0 otherwise. Show that (with $\mathbf{1} \equiv 1$)

$$|\mu| = \nu * \mathbf{1}.$$

Q4 The number of square-free integers.

With $Q(x) := \sum_{n \leq x} |\mu(n)|$ the number of square-free (quadratfrei, whence Q) integers $n \leq x$, show that :

- (i) $[x] = \sum_{m \le \sqrt{x}} Q(x/d^2);$ (ii) $Q(x) = \sum_{m \le \sqrt{x}} \mu(m) [x/m^2].$
- (iii)

$$Q(x) = \frac{6}{\pi^2} x + O(\sqrt{x}).$$
 NHB