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Handout: Tauberian theorems

We used Littlewood’s Tauberian theorem in II.1 (L7) to continue ζ ana-
lytically from Re s > 1 to Re s > 0 (via the alternating zeta function). This
is avoidable: in III.3 we continue ζ analytically to C by Euler’s summation
formula and a Dirichlet integral.

In 2012, we derived PNT twice, following Jameson’s book. Both meth-
ods (one by Jameson’s version of the Wiener-Ikehara theorem, one using the
Ingham-Newman method) are, technically speaking, complex Tauberian the-
orems (see below), and PNT follows by an elementary Tauberian argument
(III.7 L25 in 2012).

In 2013, we derive PNT without remainder once, via Fourier Analysis
and the Wiener-Ikehara theorem (III.6, L21-23). This is the prototypical
complex Tauberian theorem; for background see e.g. Korevaar’s book [Kor]
(III.4 there for Wiener-Ikehara, III.5 for Graham-Vaaler, III.6 for Ingham-
Newman).

In all these, ζ non-vanishing on the 1-line (III.4) is crucial. This was
known since 1896, when PNT was first proved. This led the great American
mathematician Norbert WIENER (1894-1964) to the Wiener Tauberian the-
ory:
N. Wiener, Tauberian theorems. Acta Mathematica 33 (1932), 1-100;
N. Wiener, The Fourier integral and certain of its applications, CUP, 1933.

In Wiener’s Tauberian theory, one has a kernel K ∈ L1. So if f ∈ L∞ (i.e.
f is bounded), the convolution f ∗K exists (and is bounded). If the kernel K
has non-vanishing Fourier transform K̂ (on R), then one calls K a Wiener
kernel. The crux mathematically is the Wiener approximation theorem, by
which the following are equivalent:
(i) K is a Wiener kernel (i.e. K̂ has no real zeros);
(ii) linear combinations of translates are dense in L1 – i.e., any G ∈ L1

can be approximated arbitrarily closely in L1-norm by functions of the form∑n
1 ckK(.− xk).

This gives one form of Wiener’s Tauberian theorem: if f is bounded, K is a
Wiener kernel, and

(f ∗K)(x) → c

∫
K (x→ ∞),

then

(f ∗G)(x) → c

∫
G (x→ ∞)
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for any G ∈ L1. Here f bounded plays the role of a Tauberian condition on f .
If f satisfies a stronger Tauberian condition (slow decrease), the conclusion
can be strengthened, to

f(x) → c (x→ ∞)

– the Wiener-Pitt theorem, or Pitt’s form of Wiener’s Tauberian theorem.
See e.g.
G. H. HARDY, Divergent series, OUP, 1949, Ch. XII,
D. V. WIDDER, The Laplace transform, PUP, Ch. V.
Hardy (12.11) proves PNT from non-vanishing on the 1-line and the Wiener-
Pitt theorem by Ingham’s method. Widder gives two proofs:
(i) non-vanishing on the 1-line and the Wiener-Pitt theorem, using kernel
(multiplicative form)

k(d) =
d

dx

( xe−x

1− e−x

)
and (see e.g. NHB, M2PM3 L30)

σ(s)Γ(s) =

∫ ∞

0

xs

ex − 1
dx/x (σ > 1),

which (as Γ has no zeros) gives the Wiener condition for the relevant kernel
(see Widder V.16);
(ii) the Wiener-Ikehara theorem (Widder V.17).

The Selberg-Erdös elementary proof of PNT (III.1) uses Selberg’s iden-
tity, and then a Tauberian argument (elementary in the technical sense, but
complicated!), in which the same function (θ or ψ) appears (discrete convo-
lution) in both the kernel K and the function f . The elementary proof of
PNT is presented as a Tauberian remainder theorem in [Kor], VII.21-28.

Ch. VII of Korevaar’s book is on Tauberian remainder theory, and one
might think that it would cast light on the remainder forms of PNT, such as
the one we have proved (III.13) and its various refinements. This turns out
not to be so. Tauberian arguments certainly have a role in Analytic Number
Theory, but the crux is usually number-theoretic rather than Tauberian.

All three approaches to PNT (classical/Wiener, Wiener-Ikehara and Selberg-
Erdös elementary) are in
H. R. PITT, Tauberian theorems, OUP, 1958, Ch. VI.
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