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Lecture 16 16.10.2015
Proof of the Completeness Th. (concluded).

Write ∥X∥∞ := max{|X(ω)| : ω ∈ Ω}, and define P ∗∗ by

P ∗∗({ω}) =
(
1 +

X(ω)

2∥X∥∞

)
P ∗({ω}).

By construction, P ∗∗ is equivalent to P ∗ (same null-sets - actually, as P ∗ ∼ P
and P has no non-empty null-sets, neither do P ∗, P ∗∗). As X is non-zero,
P ∗∗ and P ∗ are different. Now

E∗∗[ΣN
1 Hn.∆S̃n] = ΣωP

∗∗(ω)
(
ΣN

1 Hn.∆S̃n

)
(ω)

= Σω

(
1 +

X(ω)

2∥X∥∞

)
P ∗(ω)

(
ΣN

1 Hn.∆S̃n

)
(ω).

The ‘1’ term on the right gives E∗[ΣN
1 Hn.∆S̃n], which is zero since this is a

martingale transform of the E∗-martingale S̃n. The ‘X’ term gives a multiple
of the inner product

(X,ΣN
1 Hn.∆S̃n),

which is zero asX is orthogonal to Ṽ and ΣN
1 Hn.∆S̃n ∈ Ṽ . By the Martingale

Transform Lemma, S̃n is a P ∗∗-martingale since H (previsible) is arbitrary.
Thus P ∗∗ is a second equivalent martingale measure, different from P ∗. So
incompleteness implies non-uniqueness of equivalent martingale measures. //

Martingale Representation. To say that every contingent claim can be repli-
cated means that every P ∗-martingale (where P ∗ is the risk-neutral measure,
which is unique) can be written, or represented, as a martingale transform
(of the discounted prices) by the replicating (perfect-hedge) trading strategy
H. In stochastic-process language, this says that all P ∗-martingales can be
represented as martingale transforms of discounted prices. Such Martingale
Representation Theorems hold much more generally, and are very important.
For the Brownian case, see VI and [RY], Ch. V.
Note. In the example of Chapter I, we saw that the simple option there could
be replicated. More generally, in our market set-up, all options can be repli-
cated – our market is complete. Similarly for the Black-Scholes theory below.
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§4. The Fundamental Theorem of Asset Pricing; Risk-neutral val-
uation.

We summarise what we have learned so far. We call a measure P ∗ under
which discounted prices S̃n are P ∗-martingales a martingale measure. Such
a P ∗ equivalent to the true probability measure P is called an equivalent
martingale measure. Then
1 (No-Arbitrage Theorem: §2). If the market is viable (arbitrage-free),
equivalent martingale measures P ∗ exist.
2 (Completeness Theorem: §3). If the market is complete (all contingent
claims can be replicated), equivalent martingale measures are unique. Com-
bining:

Theorem (Fundamental Theorem of Asset Pricing, FTAP). In a com-
plete viable market, there exists a unique equivalent martingale measure P ∗

(or Q).

Let h (≥ 0, FN -measurable) be any contingent claim, H an admissible
strategy replicating it:

VN(H) = h.

As Ṽn is the martingale transform of the P ∗-martingale S̃n (by Hn), Ṽn is a
P ∗-martingale. So V0(H)(= Ṽ0(H)) = E∗[ṼN(H)]. Writing this out in full:

V0(H) = E∗[h/S0
N ].

More generally, the same argument gives Ṽn(H) = Vn(H)/S0
n = E∗[(h/S0

N)|Fn]:

Vn(H) = S0
nE

∗[
h

S0
N

|Fn] (n = 0, 1, · · · , N).

It is natural to call V0(H) above the value of the contingent claim h at
time 0, and Vn(H) above the value of h at time n. For, if an investor sells the
claim h at time n for Vn(H), he can follow strategy H to replicate h at time
N and clear the claim. To sell the claim for any other amount would provide
an arbitrage opportunity (as with the argument for put-call parity). So this
value Vn(H) is the arbitrage price (or more exactly, arbitrage-free price or
no-arbitrage price); an investor selling for this value is perfectly hedged.

We note that, to calculate prices as above, we need to know only
(i) Ω, the set of all possible states,
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(ii) the σ-field F and the filtration (or information flow) (Fn),
(iii) the EMM P ∗ (or Q).
We do NOT need to know the underlying probability measure P – only its
null sets, to know what ‘equivalent to P ’ means (actually, in this model, only
the empty set is null).

Now option pricing is our central task, and for pricing purposes P ∗ is
vital and P itself irrelevant. We thus may – and shall – focus attention on
P ∗, which is called the risk-neutral probability measure. Risk-neutrality is
the central concept of the subject. The concept of risk-neutrality is due in
its modern form to Harrison and Pliska [HP] in 1981 – though the idea can
be traced back to actuarial practice much earlier. Harrison and Pliska call
P ∗ the reference measure; other names are risk-adjusted or martingale mea-
sure. The term ‘risk-neutral’ reflects the P ∗-martingale property of the risky
assets, since martingales model fair games.

To summarise, we have the

Theorem (Risk-Neutral Pricing Formula). In a complete viable market,
arbitrage-free prices of assets are their discounted expected values under the
risk-neutral (equivalent martingale) measure P ∗ (or Q). With payoff h,

Vn(H) = (1 + r)−(N−n)E∗[VN(H)|Fn] = (1 + r)−(N−n)E∗[h|Fn].

§5. European Options. The Discrete Black-Scholes Formula.
We consider the simplest case, the Cox-Ross-Rubinstein binomial model

of 1979; see [CR], [BK]. We take d = 1 for simplicity (one risky asset, one
bank account); the price vector is (S0

n, S
1
n), or ((1 + r)n, Sn), where

Sn+1 =

{
Sn(1 + a) with probability p,
Sn(1 + b) with probability 1− p

with −1 < a < b, S0 > 0. So writing N for the expiry time,

Ω = {1 + a, 1 + b}N ,

each ω ∈ Ω representing the successive values of Tn+1 := Sn+1/Sn. The
filtration is F0 = {∅,Ω} (trivial σ-field), FT = F = 2Ω (power-set of Ω: all
subsets of Ω), Fn = σ(S1, · · · , Sn) = σ(T1, · · · , Tn). For ω = (ω1, · · · , ωN) ∈
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Ω, P ({ω1, · · · , ωN}) = P (T1 = ω1, · · · , TN = ωN), so knowing the pr. measure
P (i.e. knowing p) means we know the distribution of (T1, · · · , TN).

For p∗ ∈ (0, 1) to be determined, let P ∗ correspond to p∗ as P does to p.
Then the discounted price (S̃n) is a P ∗-martingale iff

E∗[S̃n+1|Fn] = S̃n, E∗[(S̃n+1/S̃n)|Fn] = 1, E∗[Tn+1|Fn] = 1 + r,

since Sn = S̃n(1 + r)n, Tn+1 = Sn+1/Sn = (S̃n+1/S̃n)(1 + r). But

E∗[Tn+1|Fn] = (1 + a).p∗ + (1 + b).(1− p∗)

is a weighted average of 1 + a and 1 + b; this can be 1 + r iff r ∈ [a, b]. As
P ∗ is to be equivalent to P and P has no non-empty null-sets, r = a, b are
excluded. Thus by §2:

Lemma. The market is viable (arbitrage-free) iff r ∈ (a, b).

Next, 1+r = (1+a)p∗+(1+b)(1−p∗), r = ap∗+b(1−p∗): r−b = p∗(a−b):

Lemma. The equivalent mg measure exists, is unique, and is given by

p∗ = (b− r)/(b− a).

Corollary. The market is complete.

Now SN = SnΠ
N
n+1Ti. By the Fundamental Theorem of Asset Pricing,

the price Cn of a call option with strike-price K at time n is

Cn = (1 + r)−(N−n)E∗[(SN −K)+|Fn]

= (1 + r)−(N−n)E∗[(SnΠ
N
n+1Ti −K)+|Fn].

Now the conditioning on Fn has no effect – on Sn as this is Fn-measurable
(known at time n), and on the Ti as these are independent of Fn. So

Cn = (1 + r)−(N−n)E∗[(SnΠ
N
n+1Ti −K)+]

= (1 + r)−(N−n)ΣN−n
j=0

(
N − n

j

)
p∗j(1− p∗)N−n−j(Sn(1 + a)j(1 + b)N−n−j −K)+;

here j, N − n − j are the numbers of times Ti takes the two possible val-
ues 1 + a, 1 + b. This is the discrete Black-Scholes formula of Cox, Ross &
Rubinstein (1979) for pricing a European call option in the binomial model.
The European put is similar – or use put-call parity (I.3).
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