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Lecture 22 30.11.2015
Schauder functions (ctd). We see that

/0 H(u)du = %A(t),

and similarly
t
/ H,(u)du = N\ Ay (1),
0

where \yg = 1 and for n > 1,

1 , )
)\n:§><2‘3/2 (n=2+k>1).
The Schauder system (A,,) is again a complete orthogonal system on L?[0, 1].
We can now formulate the next result; for proof, see the references above.

Theorem (PWZ theorem: Paley-Wiener-Zygmund, 1933). For (Z,,)&°
independent N(0,1) random variables, A, A, as above,

Wy = AnZuA(t)
n=0

converges uniformly on [0, 1], a.s. The process W = (W, : t € [0, 1]) is Brow-
nian motion.

Thus the above description does indeed define a stochastic process X =
(Xt)tep,1) on (C[0,1], F,(F¢), P). The construction gives X on C[0,n] for
each n = 1,2,---, and combining these: X exists on C[0,00). It is also
unique (a stochastic process is uniquely determined by its finite-dimensional
distributions and the restriction to path-continuity).

No construction of Brownian motion is easy: one needs both some work
and some knowledge of measure theory. But existence is really all we need,
and we assume this. For background, see any measure-theoretic text on
stochastic processes. The classic is Doob’s book, quoted above (see VIII.2
there). Excellent modern texts include Karatzas & Shreve [KS] (see partic-
ularly §2.2-4 for construction and §5.8 for applications to economics), Revuz

& Yor [RY], Rogers & Williams [RW1] (Ch. 1), [RW2] It calculus — below).
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We shall henceforth denote standard Brownian motion BM (R) — or just
BM for short — by B = (B;) (B for Brown), though W = (W,) (W for
Wiener) is also common. Standard Brownian motion BM(R?Y) in d dimen-
sions is defined by B(t) := (Bi(t),---, Bq(t)), where By,---, By are inde-
pendent standard Brownian motions in one dimension (independent copies of
BM(R)).

Zeros.
It can be shown that Brownian motion oscillates:

lim sup,_, .. Xt = +00, liminf; .o X; = —o0 a.s.

Hence, for every n there are zeros (times ¢ with X; = 0) of X with ¢t > n
(indeed, infinitely many such zeros). So if

Z:={t>0:X,=0}

denotes the zero-set of BM(R):
1. Z is an infinite set.
Next, if t,, are zeros and t,, — t, then by path-continuity B(t,) — B(t); but
B(t,) =0, so B(t) = 0:
2. Z is a closed set (Z contains its limit points).
Less obvious are the next two properties:
3. Z is a perfect set: every point t € Z is a limit point of points in Z. So
there are infinitely many zeros in every neighbourhood of every zero (so the
paths must oscillate amazingly fast!).
4. 7 is a (Lebesgue) null set: Z has Lebesgue measure zero.

In particular, the diagram above (or any other diagram!) grossly distorts
7 it is impossible to draw a realistic picture of a Brownian path.
Brownian Scaling.

For each ¢ € (0,00), X(c%t) is N(0,c?t), so X.(t) := ¢ X (c*t) is N(0,1).
Thus X, has all the defining properties of a Brownian motion (check). So,
X. IS a Brownian motion:

Theorem. If X is BM and ¢ > 0, X.(t) := ¢ 1X(c?t), then X, is again a
BM.

Corollary. X is self-similar (reproduces itself under scaling), so a Brownian
path X (.) is a fractal. So too is the zero-set Z.



Brownian motion owes part of its importance to belonging to all the im-
portant classes of stochastic processes: it is (strong) Markov, a (continuous)
martingale, Gaussian, a diffusion, a Lévy process (process with stationary
independent increments), etc.

§4. Quadratic Variation (QV) of Brownian Motion; It6’s Lemma

Recall that for & N(u,0?), € has moment-generating function (MGF)

M(t) := FEexp{t} = exp{ut + %O‘Qtz}.

Take p = 0 below; for & N(0,0?),

M(t) := Eexp{t{} = exp{%aQtQ}
2
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So as the Taylor coefficients of the MGF are the moments (hence the name
MGF!),

2
= 20

B() =varé =0*,  E(€) =30 so  war(§’) = B()-[B(E)]
For B BM, this gives in particular
EB, =0, varBy = t, E[(B)*] =t, var[(By;)?] = 2t%.

In particular, for ¢ > 0 small, this shows that the variance of B? is negligible
compared with its expected value. Thus, the randomness in B? is negligible
compared to its mean for ¢t small.
This suggests that if we take a fine enough partition P of [0, 7] — a finite
set of points
O=to<ti <---<t, =T

with |P| := max |t; — t;_1| small enough — then writing

AB(tl) = B(tz) — B(tifl), Atl = tz — tifl,



Y (AB(t;))* will closely resemble SE[(AB(t;)%], which is $At; = N(t; —
t;—1) = T. This is in fact true a.s.:

S(AB(t))? = SAt; =T  as  max|t; —t;1| — 0.

This limit is called the quadratic variation V2 of B over [0,T]:

Theorem. The quadratic variation of a Brownian path over [0, 7] exists and
equals T, a.s.

For details of the proof, see e.g. [BK], §5.3.2, SP L22, SA L738.

If we increase t by a small amount to ¢ + dt, the increase in the QV can
be written symbolically as (dBt)Q, and the increase in t is dt. So, formally
we may summarise the theorem as

(dB,)” = dt.

Suppose now we look at the ordinary variation X|AB,|, rather than the
quadratic variation ©(AB,)*. Then instead of B(AB;)* ~ AL ~ t, we get
Y|AB| ~ YWAL. Now for At small, VAL is of a larger order of magnitude
that At. So if At = ¢ converges, ©v/At diverges to +oo. This suggests —
what is in fact true — the

Corollary. The paths of Brownian motion are of infinite variation - their
variation is +00 on every interval, a.s.

The QV result above leads to Lévy’s 1948 result, the Martingale Char-
acterization of BM. Recall that B, is a continuous martingale with respect
to its natural filtration (F;) and with QV ¢. There is a remarkable converse;
we give two forms.

Theorem (Lévy; Martingale Characterization of Brownian Mo-
tion). If M is any continuous local (F;)-martingale with My, = 0 and

quadratic variation ¢, then M is an (F;)-Brownian motion.

Theorem (Lévy). If M is any continuous (F;)-martingale with My = 0
and M? —t a martingale, then M is an (F;)-Brownian motion.

For proof, see e.g. [RW1], 1.2.



