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Observe that for s < t,

B2
t = [Bs + (Bt −Bs)]

2 = B2
s + 2Bs(Bt −Bs) + (Bt −Bs)

2,

E[B2
t |Fs] = B2

s + 2BsE[(Bt−Bs)|Fs] +E[(Bt−Bs)
2|Fs] = B2

s + 0 + (t− s) :

E[B2
t − t|Fs] = B2

s − s :

B2
t − t is a martingale.

Quadratic Variation (QV).
The theory above extends to continuous martingales (bounded continu-

ous martingales in general, but we work on a finite time-interval [0, T ], so
continuity implies boundedness). We quote (for proof, see e.g. [RY], IV.1):

Theorem. A continuous martingale M is of finite quadratic variation 〈M〉,
and 〈M〉 is the unique continuous increasing adapted process vanishing at
zero with M2 − 〈M〉 a martingale.

Corollary. A continuous martingale M has infinite variation.

Quadratic Covariation. We write 〈M,M〉 for 〈M〉, and extend 〈 〉 to a bilin-
ear form 〈., .〉 with two different arguments by the polarization identity:

〈M,N〉 :=
1

4
(〈M +N,M +N〉 − 〈M −N,M −N〉).

If N is of finite variation, M ±N has the same QV as M , so 〈M,N〉 = 0.

Itô’s Lemma. We discuss Itô’s Lemma in more detail in §6 below; we pause
here to give the link with quadratic variation and covariation. We quote: if
f(t, x1, · · · , xd) is C1 in its zeroth (time) argument t and C2 in its remaining
d space arguments xi, and M = (M1, · · · ,Md) is a continuous vector mar-
tingale, then (writing fi, fij for the first partial derivatives of f with respect
to its ith argument and the second partial derivatives with respect to the ith
and jth arguments) f(Mt) has stochastic differential

df(Mt) = f0(M)dt+ Σd
i=1fi(Mt)dM

i
t +

1

2
Σd

i,j=1fij(Mt)d〈M i,M j〉t.
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Integration by Parts. If f(t, x1, x2) = x1x2, we obtain

d(MN)t = NdMt +MdNt +
1

2
〈M,N〉t.

Similarly for stochastic integrals (defined below): if Zi :=
∫
HidMi (i = 1, 2),

d〈Z1, Z2〉 = H1H2d〈M1,M2〉.
Note. The integration-by-parts formula – a special case of Itô’s Lemma, as
above – is in fact equivalent to Itô’s Lemma: either can be used to derive the
other. Rogers & Williams [RW1, IV.32.4] describe the integration-by-parts
formula/Itô’s Lemma as ‘the cornerstone of stochastic calculus’.
Fractals Everywhere.

As we saw, a Brownian path is a fractal – a self-similar object. So too is
its zero-set Z. Fractals were studied, named and popularised by the French
mathematician Benôit B. Mandelbrot (1924-2010). See his books, and
Michael F. Barnsley: Fractals everywhere. Academic Press, 1988.

Fractals look the same at all scales – diametrically opposite to the familiar
functions of Calculus. In Differential Calculus, a differentiable function has a
tangent; this means that locally, its graph looks straight; similarly in Integral
Calculus. While most continuous functions we encounter are differentiable,
at least piecewise (i.e., except for ‘kinks’), there is a sense in which the typi-
cal, or generic, continuous function is nowhere differentiable. Thus Brownian
paths may look pathological at first sight – but in fact they are typical!
Hedging in continuous time.

Imagine hedging an option in continuous time. In discrete time, this
involves repeatedly rebalancing our portfolio between cash and stock; in con-
tinuous time, this has to be done continuously. The relevant stochastic pro-
cesses (Ch. VI) are geometric Brownian motion (GBM), relatives of BM,
which, like BM, have infinite variation (finite QV). This makes the rebalanc-
ing problematic – indeed, impossible in these terms. Analogy: a cyclist has
to rebalance continuously, but does so smoothly, not with infinite variation!
Or, think of continuous-time control of a manned space-craft (Kalman filter).
In practice, hedging has to be done discretely (as in Ch. IV). Or, we can
use price processes with jumps – finite variation, but now the markets are
incomplete.

§5. Stochastic Integrals (Itô Calculus)

Stochastic integration was introduced by K. ITÔ in 1944, hence its name
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Itô calculus. It gives a meaning to
∫ t

0
XdY =

∫ t

0
Xs(ω)dYs(ω), for suitable

stochastic processes X and Y , the integrand and the integrator. We shall con-
fine our attention here to the basic case with integrator Brownian motion:
Y = B. Much greater generality is possible: for Y a continuous martingale,
see [KS] or [RY]; for a systematic general treatment, see
MEYER, P.-A. (1976): Un cours sur les intégrales stochastiques. Séminaire
de Probabilités X: Lecture Notes on Math. 511, 245-400, Springer.

The first thing to note is that stochastic integrals with respect to Brown-
ian motion, if they exist, must be quite different from the measure-theoretic
integral of Ch. II.2. For, the Lebesgue-Stieltjes integrals described there
have as integrators the difference of two monotone (increasing) functions (by
Jordan’s theorem), which are locally of finite (bounded) variation, FV. But
we know from §4 that Brownian motion is of infinite (unbounded) variation
on every interval. So Lebesgue-Stieltjes and Itô integrals must be fundamen-
tally different.

In view of the above, it is quite surprising that Itô integrals can be de-
fined at all. But if we take for granted Itô’s fundamental insight that they
can be, it is obvious how to begin and clear enough how to proceed. We
begin with the simplest possible integrands X, and extend successively much
as we extended the measure-theoretic integral of Ch. II.
1. Indicators.
If Xt(ω) = I[a,b](t), there is exactly one plausible way to define

∫
XdB:∫ t

0

XdB, or

∫ t

0

Xs(ω)dBs(ω), :=


0 if t ≤ a,
Bt −Ba if a ≤ t ≤ b,
Bb −Ba if t ≥ b.

2. Simple functions. Extend by linearity: if X is a linear combination of
indicators, X = ΣciI[ai,bi], we should define∫ t

0

XdB := Σci

∫ t

0

I[ai,bi]dB.

Already one wonders how to extend this from constants ci to suitable ran-
dom variables, and one seeks to simplify the obvious but clumsy three-line
expressions above. It turns out that finite sums are not essential: one can
have infinite sums, but now we take the ci uniformly bounded.

We begin again, calling X simple if there is an infinite sequence

0 = t0 < t1 < · · · < tn < · · · → ∞
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and uniformly bounded Ftn-measurable random variables ξn (|ξn| ≤ C for all
n and ω, for some C) if Xt(ω) can be written in the form

Xt(ω) = ξ0(ω)I{0}(t) + Σ∞i=0ξi(ω)I(ti,ti+1](t) (0 ≤ t <∞, ω ∈ Ω).

The only definition of
∫ t

0
XdB that agrees with the above for finite sums is,

if n is the unique integer with tn ≤ t < tn+1,

It(X) :=

∫ t

0

XdB = Σn−1
0 ξi(B(ti+1)−B(ti)) + ξn(B(t)−B(tn))

= Σ∞0 ξi(B(t ∧ ti+1)−B(t ∧ ti)) (0 ≤ t <∞).

We note here some properties of the stochastic integral defined so far:
A. I0(X) = 0 P − a.s.
B. Linearity. It(aX + bY ) = aIt(X) + bIt(Y ).
Proof. Linear combinations of simple functions are simple.
C. E[It(X)|Fs] = Is(X) P − a.s. (0 ≤ s < t <∞) :
It(X) =

∫ t

0
XdB is a continuous martingale.

Proof. There are two cases to consider.
(i) Both s and t belong to the same interval [tn, tn+1). Then

It(X) = Is(X) + ξn(B(t)−B(s)).

But ξn is Ftn-measurable, so Fs-measurable (tn ≤ s), so independent of
B(t)−B(s) (independent increments property of B). So

E[It(X)|Fs] = Is(X) + ξnE[B(t)−B(s)|Fs] = Is(X).

(ii) s < t and t belong to different intervals: s ∈ [tm, tm+1) for m < n. Then

E[It(x)|Fs] = E(E[It(X)|Ftn ]|Fs) (iterated conditional expectations)

= E(Itn(X)|Fs),

since ξn Ftn-measurable and independent increments of B give

E[ξn(B(t)−B(tn))|Ftn ] = ξnE[B(t)−B(tn)|Ftn ] = ξn.0 = 0.

Continuing in this way, we can reduce successively to tm+1:

E[It(X)|Fs] = E[Itm(X)|Fs].

But Itm(X) = Is(X) + ξm(B(s) − B(tm)); taking E[.|Fs] the second term
gives zero as above, giving the result. //
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