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Lecture 25 2.12.2016
Itô’s Lemma (ctd).

This important result may be summarised as follows: use Taylor’s theo-
rem formally, together with the rule

(dt)2 = 0, dtdB = 0, (dB)2 = dt.

Itô’s Lemma extends to higher dimensions, as does the rule above:

df = (f0 + Σd
i=1Uifi +

1

2
Σd

1V
2
i fii)dt+ Σd

1VifidBi

(where Ui, Vi, Bi denote the ith coordinates of vectors U, V,B, fi, fii denote
partials as above); here the formal rule is

(dt)2 = 0, dtdBi = 0, (dBi)
2 = dt, dBidBj = 0 (i 6= j).

Corollary. E[f(t,Xt)] = f0 +
∫ t
0
E[f1 + Uf2 + 1

2
V 2f22]dt.

Proof.
∫ t
0
V f2dB is a stochastic integral, so a martingale, so its expectation

is constant (= 0, as it starts at 0). //

Note. Powerful as it is in the setting above, Itô’s Lemma really comes into its
own in the more general setting of semimartingales. It says there that if X is
a semimartingale and f is a smooth function as above, then f(t,X(t)) is also
a semimartingale. The ordinary differential dt gives rise to the bounded-
variation part, the stochastic differential gives rise to the martingale part.
This closure property under very general non-linear operations is very pow-
erful and important.

Example: The Ornstein-Uhlenbeck Process.
The most important example of a SDE for us is that for geometric Brow-

nian motion (VI.1 below). We close here with another example.
Consider now a model of the velocity Vt of a particle at time t (V0 = v0),

moving through a fluid or gas, which exerts
(i) a frictional drag, assumed propertional to the velocity,
(ii) a noise term resulting from the random bombardment of the particle by
the molecules of the surrounding fluid or gas. The basic model is the SDE

dV = −βV dt+ cdB, (OU)
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whose solution is called the Ornstein-Uhlenbeck (velocity) process with re-
laxation time 1/β and diffusion coefficient D := 1

2
c2/β2. It is a stationary

Gaussian Markov process (not stationary-increments Gaussian Markov like
Brownian motion), whose limiting (ergodic) distribution is N(0, βD) (the
Maxwell-Boltzmann distribution of Statistical Mechanics) and whose limit-
ing correlation function is e−β|.|.

If we integrate the OU velocity process to get the OU displacement pro-
cess, we lose the Markov property (though the process is still Gaussian).
Being non-Markov, the resulting process is much more difficult to analyse.

The OU process is the prototype of processes exhibiting mean reversion,
or a central push: frictional drag acts as a restoring force tending to push the
process back towards its mean. It is important in many areas, including
(i) statistical mechanics, where it originated,
(ii) mathematical finance, where it appears in the Vasicek model for the term-
structure of interest-rates (the mean represents the ‘natural’ interest rate),
(iii) stochastic volatility models, where the volatility σ itself is now a stochas-
tic process σt, subject to an SDE of OU type.
Theory of interest rates.

This subject dominates the mathematics of money markets, or bond mar-
kets. These are more important in today’s world than stock markets, but are
more complicated, so we must be brief here. The area is crucially important
in macro-economic policy, and in political decision-making, particularly after
the financial crisis (”credit crunch”). Government policy is driven by fear of
speculators in the bond markets (rather than aimed at inter-governmental
cooperation against them). The mathematics is infinite-dimensional (at each
time-point t we have a whole yield curve over future times), but reduces to
finite-dimensionality: bonds are only offered at discrete times, with a tenor
structure (a finite set of maturity times).

Chapter VI. MATHEMATICAL FINANCE IN CONTINUOUS
TIME

§1. Geometric Brownian Motion (GBM)
As before, we write B for standard Brownian motion. We write Bµ,σ for

Brownian motion with drift µ and diffusion coefficient σ: the path-continuous
Gaussian process with independent increments such that

Bµ,σ(s+ t)−Bµ,σ(s) is N(µt, σ2t).
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This may be realised as

Bµ,σ(t) = µt+ σB(t).

Consider the process

Xt = f(t, Bt) := x0. exp{(µ−1

2
σ2)t+σBt} : logXt = const+(µ−1

2
σ2)t+σBt.

(∗)
Here, since

f(t, x) = x0. exp{(µ− 1

2
s2)t+ σx},

f1 = (µ− 1

2
σ2)f, f2 = σf, f22 = σ2f.

By Itô’s Lemma (Ch. V: dXt = Utdt + VtdBt and f smooth implies df =
(f1+Uf2+ 1

2
V 2f22)dt+V f2dBt) we have (taking U = 0, V = 1, X = B),

dXt = df = [(µ− 1

2
σ2)f +

1

2
σ2f ]dt+ σfdBt :

dXt = µfdt+ σfdBt = µXtdt+ σXtdBt :

X satisfies the SDE

dXt = Xt(µdt+ σdBt) : dXt/Xt = µdt+ σdBt, (GBM)

and is called geometric Brownian motion (GBM). We turn to its economic
meaning, and the role of the two parameters µ and σ, below. It will be used
to model price processes in the Black-Scholes model of VI.2. But note that
in (∗), log-prices logXt are normally distributed.

Note that for µ = 0, (GBM) shows that X is a martingale (see VI.3, in
connection with Girsanov’s theorem).

We recall the model of Brownian motion from Ch. V. It was developed
(by Brown, Einstein, Wiener, ...) in statistical mechanics, to model the ir-
regular, random motion of a particle suspended in fluid under the impact of
collisions with the molecules of the fluid.

The situation in economics and finance is analogous: the price of an as-
set depends on many factors (a share in a manufacturing company depends
on, say, its own labour costs, and raw material prices for the articles it
manufactures. Together, these involve, e.g., foreign exchange rates, labour
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costs, transport costs, etc. – all of which respond to the unfolding of events
– economic data/political events/the weather/technological change/labour,
commercial and environmental legislation/ ... in time. There is also the
effect of individual transactions in the buying and selling of a traded asset
on the asset price. The analogy between the buffeting effect of molecules
on a particle in the statistical mechanics context on the one hand, and that
of this continuous flood of new price-sensitive information on the other, is
highly suggestive. The first person to use Brownian motion to model price
movements in economics was Bachelier in his celebrated thesis of 1900.

Bachelier’s seminal work was not definitive (indeed, not correct), either
mathematically (it was pre-Wiener) or economically. In particular, Brownian
motion itself is inadequate for modelling prices, as
(i) it attains negative levels, and
(ii) one should think in terms of return, rather than prices themselves.
However, one can allow for both of these by using geometric, rather than
ordinary, Brownian motion as one’s basic model. This has been advocated
in economics from 1965 on by Samuelson1 – and was Itô’s starting-point for
his development of Itô or stochastic calculus in 1944 – and is now standard.

Returning now to (GBM), the SDE above for geometric Brownian mo-
tion driven by Brownian noise, we can see how to interpret it. We have a
risky asset (stock), whose price at time t is Xt; dXt = X(t + dt) − X(t) is
the change in Xt over a small time-interval of length dt beginning at time t;
dXt/Xt is the gain per unit of value in the stock, i.e. the return. This is a
sum of two components:
(i) a deterministic component µdt, equivalent to investing the money risk-
lessly in the bank at interest-rate µ (> 0 in applications), called the under-
lying return rate for the stock,
(ii) a random, or noise, component σdBt, with volatility parameter σ > 0
and driving Brownian motion B, which models the market uncertainty, i.e.
the effect of noise. Note that dBt is a Brownian increment, so is normally
distributed. So: returns are normally distributed.
Note. That both log-prices and returns are normally distributed just reflects

log(1 + x) ∼ x (x→ 0),

or equivalently (as in I.1, L1),(
1 +

x

n

)
→ ex (n→∞).

1Paul A. Samuelson (1915-2009), American economist; Nobel Prize in Economics, 1970
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