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Chapter I: PROBABILITY BACKGROUND

1. Area: Prelude to measure.
We shall mainly deal with area, as this is two-dimensional. We can

draw pictures in two dimensions, and our senses respond to this; paper,
whiteboards and computer screens are two-dimensional. By contrast, one-
dimensional pictures are much less vivid, while three-dimensional ones are
harder (they need the mathematics of perspective – and are called sculptures)
– and dimensions higher than four are harder still.
1. Rectangles, base b, height h: area A := bh.
2. Triangles. A = 1

2
bh.

Proof: Drop a perpendicular from vertex to base; then extend each of the
two triangles formed to a rectangle and use 1. above.
3. Polygons. Triangulate: choose a point in the interior and connect it to
the vertices. This reduces the area A to the sum of areas of triangles; use 2.
above.
4. Circles. We have a choice:
(a) Without calculus. Decompose the circle into a large number of equi-
angular sectors. Each is approximately a triangle; use 2. above [the approx-
imation boils down to sin θ ∼ θ for θ small: Archimedes].
(b) With calculus and plane polar coordinates. Use dA = dr.rdθ = rdrdθ:

A =
∫ r
0

∫ 2π

0
rdrdθ =

∫ r
0
rdr.

∫ 2π

0
dθ = 1

2
r2.2π = πr2.

Note. The ancient Greeks essentially knew integral calculus – they could do
this, and harder similar calculations [volume of a sphere V = 4

3
πr3; surface

area of a sphere S = 4πr2dr, etc.; note dV = Sdr].
What the ancient Greeks did not have is differential calculus [which we all

learned first!] With this, they would have had the idea of velocity, and differ-
entiating again, acceleration. Then they might well have got Newton’s Law
of Motion, Force = mass × acceleration. This triggered the Scientific Rev-
olution. Had this happened in antiquity, the world would have been spared
the Dark Ages and world history would have been completely different!
5. Ellipses, semi-axes a, b. Area A = πab (w.l.o.g., a > b) [Archimedes].
Proof: cartesian coordinates: dA = dx.dy.
Reduce to the circle case: compress [‘squash’] the x-axis in the ratio b/a [so
dx 7→ dx.b/a, dA 7→ dA.b/a]. Now the area is A = πb2, by 4. above. Now ‘un-
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squash’: dilate the x-axis in the ration a/b. So A 7→ A.a/b = πb2.a/b = πab.
Fine – what next? We have already used both the coordinate systems to

hand. There is no general way to continue this list. Indeed, I don’t know
another example of comparable neatness and importance to the above.

The only general procedure is to superimpose finer and finer sheets of
graph paper on our region, and count squares (‘interior squares’ and ‘edge
squares’). This yields numerical approximations – which is all we can hope
for, and all we need, in general.

The question is whether this procedure always works. Where it is clearly
most likely to fail is with highly irregular regions: ‘all edge and no middle’.

It turns out that this procedure does not always work; it works for some
but not all sets – those whose structure is ‘nice enough’. This goes back to
the 1902 thesis of Henri LEBESGUE (1875-1941):
H. Lebesgue: Intégrale, longueur, aire. Annali di Mat. 7 (1902), 231-259.
Similarly in other dimensions. So: some but not all sets have a length/area/volume.
Those which do are called (Lebesgue) measurable; length/area/volume is
called (Lebesgue) measure; this subject is called Measure Theory.

We first meet integration in just this context – finding areas under curves
(say). The ‘Sixth Form integral’ proceeds by dividing up the range of inte-
gration on the x-axis into a large number of small subintervals, [x, x + dx]
say. This divides the required area up into a large number of thin strips, each
of which is approximately rectangular; we sum the areas of these rectangles
to approximate the area.

This informal procedure can be formalised, as the Riemann integral (G.
F. B. RIEMANN (1826-66) in 1854). This (basically, the Sixth From integral
formalised in the language of epsilons and deltas) is part of the undergradu-
ate Mathematics curriculum.

We see here the essence of calculus (the most powerful single weapon in
mathematics, and indeed in science). If something is reasonably smooth, and
we break it up finely enough, curves look straight, so we can handle them.
We make an error by this approximation, but when calculus applies, this er-
ror can be made arbitrarily small, so the approximation is effectively exact.
Example: We do this sort of thing automatically. If in a discussion of global
warming we hear an estimate of polar ice lost, this will translate into an
estimate of increase in sea level (neglecting the earth’s curvature).
Note. The ‘squashing’ argument above was deliberately presented informally.
It can be made quite precise – but this needs the mathematics of Haar mea-
sure, a fusion of Measure Theory and Topological Groups.
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§2. Probability basics: Recapitulation from Years 1 and 2

Think of some economic fundamental — a stock price, or an option on it.
These things are difficult to predict — say, in a year’s time, with any accuracy.
But, successful predictions (at least, more successful than the competition)
would make money, so such predictions are much studied. There is uncer-
tainty present. The mathematical machinery we have to model uncertainty,
or randomness, is probability; the application area one meets first is statis-
tics. These are important enough to be core material in Years 1 and 2. We
will need background knowledge of such things as:

Terminology and notation
Random variables; notation such as X.
Expectation (mean), E[X], as a measure of location;
variance (variability), varX, as a measure of randomness, dispersion or
spread.
Distribution function, F (x) = FX(x) := P (X ≤ x) (distribution; d/n; law);
densities, f(x): F (x) =

∫ x
−∞ f(u)du.

Expectation

E[g(X)] =

∫ ∞
−∞

g(x)dF (x).

This is true quite generally (as a Lebesgue-Stieltjes integral: see Ch. III). If
F has density f , this is

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx

— so ‘dF (x) = f(x)dx’ in the density case). In the discrete case, if X takes
values xn with probability an, this is a summation:

E[g(X)] =
∑

ang(xn).

These formulae will be familiar to you from Years 1 and 2; we will deal with
both together, and pass to a much better integral (there are several!) in Ch.
III.
Several random variables: (X, Y ), etc. Joint and marginal distributions:
F (x, y) = FX,Y (x, y) := P (X ≤ x, Y ≤ y) (joint: governs behaviour of X, Y
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together; marginals: govern their behaviour separately).
Covariances: cov(X, Y ) := E[(X − E[X])(Y − E[Y ])];
correlation ρ = ρ(X, Y ) := cov(X, Y )/

√
var X.var t.

So: E[X] has the dimensions ofX; var X has the dimensions ofX2; cov(X, Y )
has those of XY ; corr(X, Y is dimensionless, and takes values in [−1, 1]
(Cauchy-Schwarz inequality).
cov(X, Y ) = E[XY ] − E[X].E[Y ]; var X = cov(X,X) = E[X2] − (E[X])2,
var X ≥ 0; var X = 0 iff X is constant a.s. (almost surely — with proba-
bility one), and then the constant is E[X].

Independence
A family of random variables X1, · · · , Xn are independent if, for any sub-

family Xr1 , · · · , Xrk , and any intervals Ii (more generally, measurable sets:
Ch. III),

P (Xr1 ∈ I1, · · · , Xrk ∈ Ik) = P (Xr1 ∈ I1) · · ·P (Xrk ∈ Ik).

That is, knowing how the Xs behave separately (as on the RHS) tells us how
they behave together (as on the LHS).
Taking the Ii = (−∞, xi]:
the Xs are independent iff their joint distribution function factorises into the
product of the marginal distribution functions.
When the densities exist, differentiating wrt x1, · · · , xn gives: the Xs are
independent iff their joint density function factorises into the product of the
marginal density functions.
Similarly for mass functions, in the discrete case.
Similarly for the various transforms we shall need; see below.

Multiplication Theorem: if X, Y are independent and have means,

E[XY ] = E[X].E[Y ].

Proof.

E[XY ] =

∫ ∫
xydFX,Y (x, y) =

∫ ∫
xyd(FX(x)FY (y))

=

∫
xdFX(x)

∫
ydFY (y) = E[X].E[Y ].

Note the notation, and compare it with what you may have met in calcu-
lus of several variables. We use

∫ ∫
rather than

∫
, to emphasise that this is
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(like) a double integral in calculus courses: we usually evaluate such a double
integral by integrating out first over one variable and then over the other,
so a double integral is reduced to two repeated single integrals. We will see
how to do this using Lebesgue-Stieltjes integrals (better!) in Ch. III. But on
the first RHS above, the one d means ‘integrate w.r.t.’ one two-dimensional
function (or, in Ch. III, measure).

Discrete and continuous
The most basic case is when random variables X take only discrete values

(finitely or countably infinitely many — it usually doesn’t matter which), xn
say. Then if

an := P (X = xn),

the sequence a = (an) is called the (probability) mass function. Think of
probability as mass; there is mass one altogether; in the discrete case, the
mass function divides it up over the possible values xn; we can calculate all
probabilties by it summing:

P (A) = P (X ∈ A) =
∑

n:xn∈A

an =
∑

n:xn∈A

P (X = xn).

Summation is easy! All this is completely elementary. But, it largely suf-
fices for the mathematics of insurance (Ch. VIII), essentially because we can
count insurance claims, and also for mathematical finance in discrete time
(Ch. V), when we can usually take the state space discrete also.

3. Transforms

Characteristic functions (CFs).
Definition. For a random variable X with distribution function F , the char-
acteristic function (CF) is

φ(t), or φX(t), := E[eitX ]

(here t,X are real and i =
√
−1; everything is real unless we say otherwise).

The great thing about the CF is that it always exists (converges): |eitX | ≤ 1,
and |

∫
.| ≤

∫
|.|, so also |E[.]| ≤ E[|.|], so

|φ(t)| = |E[eitX ]| ≤ E[|eitX |] = E[1] = 1 (<∞!)
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If X, Y are independent with d/ns F , G, their sum X + Y has d/n H,
where H is the convolution

H = F ∗G :

H(z) := P (X + Y ≤ z) =

∫
x+y≤z

dF (x)dG(y) =

∫ ∞
−∞

dF (x)

∫ z−x

∞
dG(y)

=

∫ ∞
−∞

G(z − x)dF (x) =

∫ ∞
−∞

F (z − y)dG(y),

by symmetry. If F,G have densities f, g, H has density h := f ∗ g, the
convolution of f, g, where

h(z) := (f ∗ g)(z) =

∫ ∞
−∞

g(z − x)f(x)dx =

∫ ∞
−∞

f(z − y)g(y)dt.

Technically, the CF is the Fourier-Stieltjes transform of the d/n F , and the
Fourier transform of the density f when this exists.

We are constantly averaging independent readings, so summing. Sum-
ming numbers (e.g. values of random variables) is easy, even for lots of
them. But this corresponds to convolution for distributions, and for n sum-
mands, this involves n− 1 integrations – awkward for large n! By contrast,
the CF makes things easy:
the CF of an independent sum is the product of the CFs.
Proof. The CF of X + Y is

φX+Y (t) := E[eit(X+Y )]

= E[eitX .eitY ] (property of exponentials)

= E[eitX ].E[eitY ] (independence: Multiplication Theorem)

= φX(t).φY (t).

There are several variants of this:

Moment-generating functions (MGFs).
The MGF of a rv X is

M(t) := E[etX ].

This looks just like the CF, except that we have no i. This looks simpler –
but it is in fact more complicated. For, |eitX | ≤ 1, so all the expectations
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above converge. But, as etX may grow exponentially, the MGF may fail to
be defined for all real t – may diverge to +∞ for some t. However, when it
does exist, we can expand the exponential and take expectations termwise:
with

µn := E[Xn]

the nth moment of X,

M(t) = E[etX ] = E[
∞∑
0

tnXn/n!] =
∞∑
0

tnE[Xn]/n! =
∞∑
0

tnµn/n!.

The one function M(t) on the left is said to generate the infinitely many
moments µn on the right, hence the name MGF.

Moments.
Recall from Complex Analysis (M2P3) that an analytic function deter-

mines and is determined by its power-series expansions. So if power-series
expansion of M(t) above about the origin has radius of convergence R > 0,
we can find the moments by differentiation:

µn = E[Xn] = M (n)(0).

Similarly for CFs: remembering the i: inµ(n) = φ(n)(0) (here things always
converge, so we don’t have to worry about R).

Laplace-Stieltjes transform (LST).
When X ≥ 0, we know that e−sX ≤ 1 for s ≥ 0, so E[e−sX ] ≤ 1; in

particular, the expectation (= integral) always exists, unlike with the MGF.
So, the LST of X ≥ 0 is defined as

ψ(s) := E[−sX ] (s ≥ 0).

Note. The distinction between Fourier and Laplace transforms vanishes if
one uses complex variables – which is what one should do anyway. This goes
back to the classic book of Paley and Wiener:
R. E. A. C. PALEY & N. Wiener, Fourier transforms in the complex domain,
AMS, 1934.

Probability generating functions (PGFs).
If X is not only non-negative but also integer-valued, we can specialise
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the LST above to the PGF (replace e−s, s ≥ 0, by s ∈ [0, 1]: if X takes
values in N0, with

P (X = n) = pn (n = 0, 1, 2, · · · ),

the PGF of X is

P (s) := E[sX ] =
∞∑
0

pns
n;

as P (1) =
∑∞

0 pn = 1 (<∞!), the radius of convergence of the power series
here is always at least 1.
As with CF, so with MGF, LST and PGF: the transform (convolution) of an
independent sum is the product of the transforms, and similarly for moments.

4. The Poisson Process; Compound Poisson Processes

The Poisson distribution.
This is defined on N0 := {0, 1, 2, · · · } for a parameter λ > 0 by

pk := e−λλk/k! (k = 0, 1, 2, · · · ).

From the exponential series,
∑

kpk = 1, so this does indeed give a probability
distribution (or law, for short) on N0. It is called the Poisson distribution
P (λ), with parameter λ, after S.-D. Poisson (1781-1840) in 1837.

The Poisson law has mean λ. For if N is a random variable with the
Poisson law P (λ), N ∼ P (λ), N has mean

E[N ] =
∑

kP (N = k) =
∑

kpk =
∑

k.e−λλk/k! = λ
∑

e−λλk−1/(k−1)! = λ,

as the sum is 1 (exponential series – P (λ) is a probability law). Similarly,

E[N(N − 1)] =
∑

k(k − 1)e−λλk/k! = λ2
∑

e−λλk−2/(k − 2)! = λ2 :

var(N) = E[N2]−(E[N ])2) = E[N(N−1)]+E[N ]−(E[N ])2) = λ2+λ−(λ)2 = λ :

the Poisson law P (λ) with parameter λ has mean λ and variance λ.
Note. 1. The Poisson law is the commonest one for count data on N0.
2. This property – that the mean and variance are equal (to the parameter,
λ) is very important and useful. It can be used as the basis for a test for
Poissonianity, the Poisson dispersion test. Data with variance greater than
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the Poisson are called over-dispersed; data with variance less than Poisson
are under-dispersed.
3. The variance calculation above used the (second) factorial moment,
E[N(N − 1)]. These are better for count data than ordinary moments.

The Exponential Distribution
A random variable T on R+ := (0,∞) is said to have an exponential

distribution with rate (or parameter) λ, T ∼ E(λ), if

P (T ≤ t) = 1− e−λt for all t ≥ 0.

So this law has density

f(t) := λe−λt (t > 0), 0 (t ≤ 0)

(as
∫ t
−∞ f(u)du = P (T ≤ t), as required). So the mean is

E[T ] =

∫
tf(t)dt =

∫ ∞
0

λte−λtdt = 1/λ.

∫ ∞
0

ue−udu = 1/λ

(putting u := λt). Similarly,

E[T 2] =

∫
t2f(t)dt =

∫ ∞
0

λt2e−λtdt = 1/λ2
∫ ∞
0

u2e−udu = 2/λ2,

var(T ) = E[T 2]− (E[T ])2 = 2/λ2 − (1/λ)2 = 1/λ2.

The Lack-of-Memory Property.
Imagine components – lightbulbs, say – which last a certain lifetime, and

are then discarded and replaced. Do we expect to see aging? With human
lifetimes, of course we do! On average, there is much less lifetime remaining
in an old person than in a young one. With some machine components,
we also see aging. This is why parts in cars, aeroplanes etc. are replaced
after their expected (or ‘design’) lifetime, at routine servicing. But, some
components do not show aging. These things change with technology, but in
the early-to-mid 20th C. lightbulbs typically didn’t show aging. Nor in the
early days of television did television tubes (not used in modern televisions!).
In Physics, the atoms of radioactive elements show lack of memory. This is
the basis for the concept of half-life: it takes the same time for half a quantity
of radioactive material to decay as it does for half the remaining half, etc.
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We can find which laws show no aging, as follows. The law F has the
lack-of-memory property iff the components show no aging – that is, if a
component still in use behaves as if new. The condition for this is

P (X > s+ t|X > s) = P (X > t) (s, t > 0) :

P (X > s+ t) = P (X > s)P (X > t).

Writing F (x) := 1− F (x) (x ≥ 0) for the tail of F , this says that

F (s+ t) = F (s)F (t) (s, t ≥ 0).

Obvious solutions are

F (t) = e−λt, F (t) = 1− e−λt

for some λ > 0 – the exponential law E(λ). Now

f(s+ t) = f(s)f(t) (s, t ≥ 0)

is a ‘functional equation’ – the Cauchy functional equation – and we quote
that these are the only solutions, subject to minimal regularity (such as one-
sided boundedness, as here – even on an interval of arbitrarily small length!).

So the exponential laws E(λ) are characterized by the lack-of-memory
property. Also, the lack-of-memory property corresponds in the renewal con-
text to the Markov property. The renewal process generated by E(λ) is
called the Poisson (point) process with rate λ, Ppp(λ). So: among renewal
processes, the only Markov processes are the Poisson processes. We meet
Lévy processes below: among renewal processes, the only Lévy processes are
the Poisson processes.

It is the lack of memory property of the exponential distribution that
(since the inter-arrival times of the Poisson process are exponentially dis-
tributed) makes the Poisson process the basic model for events occurring
‘out of the blue’. Typical examples are accidents, insurance claims, hospital
admissions, earthquakes, volcanic eruptions etc. So it is not surprising that
Poisson processes and their extensions (compound Poisson processes) domi-
nate in the actuarial and insurance professions, as well as geophysics, etc.

The Gamma function.
Recall the Gamma function,

Γ(x) :=

∫ ∞
0

tx−1e−tdt, (x > 0)
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(x > 0 is needed for convergence at the origin). One can check (integration
by parts, and induction) that

Γ(x+ 1) = xΓ(x) (x > 0), Γ(n+ 1) = n! (n = 0, 1, 2, · · · );

thus Gamma provides a continuous extension to the factorial. One can show

Γ(
1

2
) =
√
π

(the proof is essentially that
∫
R e
− 1

2
x2dx =

√
2π, i.e. that the standard nor-

mal density integrates to 1). The Gamma function is needed for Statistics, as
it commonly occurs in the normalisation constants of the standard densities.

The Gamma distribution.
The Gamma distribution Γ(ν, λ) with parameters ν, λ > 0 is defined to

have density

f(x) =
λν

Γ(ν)
.xν−1e−λx (x > 0).

This has MGF

M(t) :=

∫
etxf(x)dx =

λν

Γ(ν)
.

∫ ∞
0

etx.xν−1e−λxdx

=
λν

Γ(ν)
.

∫ ∞
0

xν−1e−(λ−t)xdx =
λν

Γ(ν)
.

1

(λ− t)ν

∫ ∞
0

uν−1e−udu

=
( λ

λ− t

)ν
(t < λ).

Sums of exponential random variables.
LetW1,W2, . . .Wn be independent exponentially distributed random vari-

ables with parameter λ (‘W for waiting time’ – see below): Wi ∼ E(λ). Then

Sn := W1 + · · ·+Wn ∼ Γ(n, λ).

For, each Wi has moment-generating function (MGF)

M(t) := E[etWi ] =

∫ ∞
0

etxf(x)dx =

∫ ∞
0

etx.λe−λxdx

= λ.

∫ ∞
0

e−(λ−t)dx = λ/(λ− t) (t < λ).
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The MGF of the sum of independent random variables is the product of the
MGFs (same for characteristic functions, CFs, and for probability generating
functions, PGFs – check). So W1+ · · ·+Wn has MGF (λ/(λ−t))n, the MGT
of Γ9, n, λ) as above:

Sn := W1 + · · ·Wn ∼ Γ(n, λ).

The Poisson Process

Definition. Let W1,W2, . . .Wn be independent exponential E(λ) random
variables, Tn := W1,+ . . .+Wn for n ≥ 1, T0 = 0, N(s) := max{n : Tn ≤ s}.
Then N = (N(t) : t ≥ 0) (or (Nt : t ≥ 0)) is called the Poisson process (or
Poisson point process) with rate λ, Pp(λ) (or Ppp(λ)).

Interpretation: Think of the Wi as the waiting times between arrivals of
events, then Tn is the arrival time of the nth event and N(s) the number of
arrivals by time s. Then N(s) has a Poisson distribution with mean λs:

Theorem. If {N(s), s ≥ 0} is a Poisson process, then
(i) N(0) = 0;
(ii) N(t+ s)−N(s) is Poisson P (λt). In particular, N(t) ∼ P (λt);
(iii) N(t) has independent increments.
Conversely, if (i),(ii) and (iii) hold, then {N(s), s ≥ 0} is a Poisson process.

Proof. Part (i) is clear: the first lifetime is positive (they all are).
The link between the Poisson process, defined as above in terms of the

exponential distribution, and the Poisson distribution, is as follows. First,

P (Nt = 0) = P (t < X1) = e−λt.

12



This starts an induction, which continues (using integration by parts):

P (Nt = k) = P (Sk ≤ t < Sk+1) = P (Sk ≤ t)− P (Sk+1 ≤ t)

=

∫ t

0

λk

Γ(k)
xk−1e−λxdx−

∫ t

0

λk+1

Γ(k + 1)
xke−λxdx

=

∫ t

0

[ λk

Γ(k + 1)
.xk − λk−1

Γ(k)
.xk−1

]
d(e−λx)

=
[ λk

Γ(k + 1)
.tk − λk−1

Γ(k − 1)
.tk−1

]
e−λt −

∫ t

0

e−λx
[ λk

Γ(k)
.xk−1 − λk−1

Γ(k − 1)
.xk−2

]
dx

=
[ λk

Γ(k + 1)
.tk − λk−1

Γ(k − 1)
.tk−1

]
e−λt +

∫ t

0

e−λx
[ λk−1

Γ(k − 1)
.xk−2 − λk

Γ(k)
.xk−1

]
dx.

But the integral here is P (Nt = k − 1). So (passing from Gammas to facto-
rials)

P (Nt = k)− e−λt (λt)
k

k!
= P (Nt = k − 1)− e−λt (λt)k−1

(k − 1)!
,

completing the induction. This shows that

N(t) ∼ P (λt).

This gives (ii) also: re-start the process at time t, which becomes the new
time-origin. The re-started process is a new Poisson process, by the lack-of-
memory property applied to the current item (lightbulb above); this gives
(ii) and (iii). Conversely, independent increments of N corresponds to the
lack-of-memory property of the lifetime law, and we know that this charac-
terises the exponential law, and so the Poisson process. //

The compound Poisson process.
If in an insurance company (Ch. VIII) claims arrive in a Poisson process

of rate λ, and are independent, of each other and the arrival process, with
distribution F , the random sums

Yt := X1 + · · ·+XN(t)

form a process Y = (Yt), called a compound Poisson process, CP (λ, F ). For
the distribution, mean and variance of Yt, see Problems 1.
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