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Chapter VIII. INSURANCE MATHEMATICS
1. Insurance Background

The idea of insurance is simple: it is the spreading, or pooling, of risk.
The relevant theory is that of collective risk.

History.

Insurance can be traced back to antiquity (Greek and Roman times). Like
much else, it disappeared, to be re-developed in Renaissance Italy (Genoa,
14th C.). It received a great impetus in the UK from the Great Fire of Lon-
don in 1666; fire insurance had started there by 1681. Property insurance
had begun in London by 1710, and in Philadelphia (Benjamin Franklin) in
1752.

Shipping insurance grew in London around Edward Lloyd’s coffee house
in the 1680s. He died in 1710; Lloyd’s of London had developed by 1774.

John Graunt (1620-74) published his Bills of Mortality in 1662 (breaking
down London deaths by cause, age etc.). This was followed by the first life
table (Edmund Halley, 1693). Mutual life insurance had begun by 1762. One
of the earliest such companies is Scottish Widows (1815) (founded to look
after the widows of Presbyterian ministers who died in office, and had to
leave the manse — the minister’s house).

At a national level, national insurance began in Germany with Bismarck
in the 1880s. It developed here with e.g. Lloyd George (pre-WWI), Bev-
eridge and the Beveridge Report (1942), and the founding of the Welfare
State post-WWIL.

Limated liability.

Lloyd’s of London pre-dates limited liability (which developed in the mid-
19th C.). The Lloyd’s participants, or names, had unlimited liability, and
were liable for the full extent of losses, irrespective of their investment or
their assets. This changed, following the Lloyd’s scandal of the 1990s.

Insurance is now done (and most was before the Lloyd’s scandal) by lim-
ited liability companies. So for these, the possibility of ruin is crucial. Not
only would this wipe out the company, its assets and expertise, the jobs of
its employees etc., but it would leave policy-holders without cover.
Reinsurance.

Because a run of large claims could bankrupt an insurance company,
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companies seek to lay off large risks — to reinsure — insure themselves — with
larger, specialist reinsurance companies.

The question arises as to where reinsurane companies re-reinsure them-
selves ... This raises the modern form of Juvenal’s question (Satires, c. 80
AD): Quis custodiet ipsos custodes — Who guards the guards? Who polices
the police? Reinsurers reinsure insurers, but — who reinsures the reinsurers?
— etc.

Regulation.

It is in the interest of some industries to agree to cover each other’s lia-
bilities in the event of a bankruptcy. For instance, this happens with travel
firms. If a travel firm goes bust, leaving large numbers of people stranded
abroad, or unable to travel on a foreign holiday booked and paid for, this
would destroy public confidence in the whole industry — unless other firms,
by prior agreement, step in to cover. This is what happens, and works well.

As motor insurance is compulsory by law, motor insurance companies are
regulated by the state, and again, this provides a degree of protection in case
of bankruptcy.

The actuarial profession.

People involved in the insurance industry have been known as actuaries
from the early days of insurance. Companies offering insurance employ actu-
aries, and these need to be qualified. Actuaries become qualified by passing
exams set by the Institute of Actuaries. London is an important centre for
the actuarial/insurance industry, and so is Edinburgh. The mathematics
involved is interesting, and useful. Those taking this course would be well
advised to consider an actuarial career as one of their career possibilities.
Life v. non-life.

The usual way the modern insurance industry splits is between life and
non-life. Life insurance is payable on death, and/or as an annuity ceasing
on death. Life insurance is often combined with a mortgage (so that the
mortgage is paid if one dies before it expires). Naturally, assessing premiums
here depends on a detailed knowledge of mortality rates over ages, etc. The
relevant mathematics is largely Survival Analysis — hazard rates, etc. Much
use is made here nowadays of martingale methods. Non-life splits again into
categories: motor; house; (house) contents (these are the only three kinds of
insurance ordinary people take out); (personal) accident (the next common-
est); travel; commercial property; industrial; ... There are even catastrophe
insurance, weather insurance etc. nowadays.



2. The Poisson process and compound Poisson process (continued).

Time-dependent rates.

The parameter \ is called the rate or intensity of the Poisson process.
Think of it as the rate at which accidents happen (or telephone calls arrive
at an exchange), or the intensity of a bombardment, etc. The work of Ch. I
extends to include time-dependent intensities. We say that {N(s),s > 0} is
a Poisson process with rate A(r) if
(i) N(0) =0,

(ii) for s < ¢, N(t) — N(s) is Poisson with mean [’ \(r)dr, and
(iii) N(t) has independent increments.

Limit Theory.
For independent, identically distributed (iid for short) random variables

X1, Xo, -+, the sample mean (a statistic: a function of the data — random,
as the data is, but known, after sampling, when you have the data) is
1 n
X == Xk

The mean, or population mean, E[X] is defined as in Measure Theory. One
would expect that X would tend to E[X] as the sample size n increases.
This is exactly right. By Kolmogorov’s Strong Law of Large Numbers of
1933 (SLLN, or just LLN for short), convergence takes place with probability
one (almost surely, or a.s. for short):

X — E[X] (n — 00) a.s.

For renewal theory (in particular, for the Poisson process), this gives another
LLN.

Theorem (LLN for Renewal Theory; Doob, 1948). For X; (positive)
iid with mean p, the renewal process N = (N(t)) satisfies
N(t 1
NG — — (t — o0) a.s.
t %
Proof. By definition of N(t) and S, := Y| X,

Snw <t < Sn)+1-
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So as soon as N(t) > 0,

Sve 1 Snw+ N(H) +1
N(t) = N(t) N(t)+1 N(t)

Ast — 0o, N(t) — oo a.s. So by the LLN the left tends to p a.s.; so does
the first term on the right, while the second term on the right tends to 1.
This gives

t/N(t) — p (t = o0) a.s.

The result follows by inverting this. //
The Conditional Mean Formula

Theorem (Conditional Mean Formula. For B any o-field,
EIE[X|B]] = BIX].

Proof. Take C the trivial o-field {), 2}. This contains no information, so an
expectation conditioning on it is the same as an unconditional expectation.
The first form of the tower property now gives

EIE[X]B] [{0,9}] = E[X|{0,Q}] = E[X]. //

The Conditional Variance Formula

Theorem (Conditional Variance Formula).
var(Y) = Evar(Y|X)] + var(E[Y|X]).
Proof. Recall varX := E[(X — EX)?]. Expanding the square,
varX = E[X?—2X.(EX)+(EX)? = BE(X*)—2(EX)(EX)+(EX)* = E(X?)—(EX)*.

Conditional variances can be defined in the same way. Recall (‘taking out
what is known’) that E(Y|X) is constant when X is known (= z, say), so
can be taken outside an expectation over X, E'x say. Then

var(Y|X) = BE(Y?X) — [E(Y|X)]*.
Take expectations of both sides over X:

Exvar(Y|X) = Ex|[E(Y?X)] — Ex|[E(Y|X)]%
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Now Ex[E(Y?X)] = E(Y?), by the Conditional Mean Formula, so the right
is, adding and subtracting (EY)?,

{E(Y?) — (BEY)*} —{Ex[E(Y|X)]* — (EY)*}.

The first term is varY, by above. Since E(Y|X) has Ex-mean EY, the
second term is vary E(Y|X), the variance (over X) of the random variable
E[Y|X] (random because X is). Combining, the result follows. //

Interpretation.
varY = total variability in Y,
Exvar(Y|X) = variability in Y not accounted for by knowledge of X,
varx E(Y|X) = variability in Y accounted for by knowledge of X.
In words:
variance = mean of conditional variance + variance of conditional mean,
with these interpretations. This is extremely useful in Statistics, in breaking
down uncertainty, or variability, into its contributing components. There is
a whole area of Statistics devoted to such Components of Variance.

Compound Poisson Processes
We now associate i.i.d. random variables X; with each arrival and consider

Thus S(t) is a random sum — a sum of a random number of random variables.
A typical application in the insurance context is a Poisson model of claim
arrivals with random claim sizes. The claims arrive at the epochs of a Poisson
process with rate A\. The claims are independent (different motor accidents
are independent; so are different house-insurance claims for fire damage, bur-
glary etc.). Then the claim-total mean is the claim-number mean times the
claim-amount mean. This is a special case of Wald’s identity (below).

Theorem. (i) For N Poisson distributed with parameter A and X, Xs, ...
independent of each other and of N, each with distribution F' with mean p,
variance 0% and characteristic function ¢(t), the compound Poisson distribu-

tion of
YZ:X1+...+XN

has CF v¥(u) = exp{—\(1 — ¢(u))}, mean Ay and variance AE[X?].
(ii) For N = (V) a compound Poisson process with rate A and jump-
distribution F with mean p and variance o2, N, has CF
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P(u) = exp{—=At(1 — ¢(u))}, mean Aty and variance At E[X?].

Proof. This is Prob/Soln 1 Q2,3. For the mean and variance, we give a
second proof below.

Given N, Y = X; + ...+ Xy has mean NEX = Npu and variance
N var X = No? As N is Poisson with parameter A\, N has mean A\ and
variance A. So by the Conditional Mean Formula,

EY = E[E(Y|N)] = E[Nu] = .
By the Conditional Variance Formula,

varY = Ewar(Y|N)] 4+ var E[Y|N]
= E[Nvar X|+var([N E[X])
= E[N]war X +var N.(EX)?
= ANEX?] = (BIX])?] + A(B[X])?
= AE[X?] = \No? + ).

(ii) Apply (i): N; has mean At and variance At. //

In the insurance context (below), the Poisson points represent the claim
arrivals, so the Poisson rate ) is the rate at which claims arrive; p is the
mean claim size. So Ap has the interpretion of a claim rate — rate at which
money goes out of the company in claims.

Just as the mathematics of the Black-Scholes model (Ch. VII) is domi-
nated by Brownian motion, that of insurance is dominated by the Poisson
and compound Poisson processes. These are the basic prototypes, and all
we have time to cover in detail in this course. However, these are models, of
reality, and reality is always more complicated than any model! Box’s dictum
(George Box, British statistician, 1919-2013): All models are wrong. Some
models are useful. In more advanced work, more complicated and detailed
models are needed. So there is plenty of scope for useful applications in the
real world of any probability or statistics you know, or will learn! At the end
of the course (VIIL5), we discuss briefly some generalisations. But to note
for now: the principal weakness of our assumptions here is the independence
of claims. This is reasonable under normal conditions, but not during a cri-
sis. Think of natural disasters such as major hurricanes, etc.



§3. Renewal theory

Renewal Processes

Suppose we use components — light-bulbs, say — whose lifetimes X1, X, . ..
are independent, all with law F on (0, 00). The first component is installed
new, used until failure, then replaced, and we continue in this way. Write

S, = ZX,», N; := max{k : S < t}.
1

Then N = (N; : t > 0) is called the renewal process generated by F; it is a
counting process, counting the number of failures seen by time ¢. Note that

SN(t) <t.

Note. For stochastic processes, notations such as IV, and N (t) are used in-
terchangeably.

Renewal processes are often used, but the only ones we need here are the
Poisson processes — those for which the lifetime law is exponential.

The renewal function
We saw above that

NyJt =1/ (t = 00), a.s.
If we apply the expectation operator E[.] formally, this suggests that
E[N]/t = 1/ (t — o0).

This is indeed true, but although its conclusion seems weaker than that of
the a.s. result, its proof if harder (though not as hard as that of the SLLN!).

Theorem (Renewal Theorem; Feller 1941; Doob, 1948). If the mean
lifetime length p is finite, the renewal function E[N;] satisfies

E[NJ/t =1/ (t — 0).

Proof. The conclusion with > in place of = does indeed follow from the a.s.
result by taking expectations. This is by Fatou’s lemma, which we quote
from Measure Theory. [For proof, see e.g. a book on Measure Theory, or
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my homepage, Stochastic Processes, 1.5 Lecture 8.] For the < part, choose
a > 0, and truncate the X,, at level a:

X, = min(X,,a).
Write N, i1 for the ‘tilde” analogues of N;, u. By Wald’s identity,
E[X, + -+ Xy, = E[X].E[N,] = i.E[N}].
Now Nt > N; (because of the truncation, there will be more renewals if

anything), and Sﬁt—l + XNt <t+a (the ‘¢’ from the first term, the ‘a’ from
the second). So

E[N,/t < E[N]/t (N < Ny)

= L'E[Xi+--4+ Xg]/t (above - Wald’s identity)

= i'E] NNt]/t ( definition of Sn)

< it (Sv@ < t, and similarly for S, Nt)
So

limsup B[N]/t < i .
Now let a T oo: i — pu, giving the < part and the result. //

With F' the lifetime distribution function — that of each X; — the distri-
bution function of S, == Xy +--- + X, is F % --- % F' (n Fs), the n-fold
convolution of F' with itself, written F*". Define

U(t) =Y F™(t).

This is called the remewal function of F. For, it gives the mean number
E[Ny] of renewals up to time ¢. This gives the reformulation of the Renewal
Theorem below.

Theorem (Renewal Theorem, second form; Feller, 1941, Doob,
1948). The renewal function gives the mean number of renewals:

U(t) = B[Ny,



So if the mean lifetime is p,
Ut)/t - 1/p (t — 00).

Proof.

E[N] = Y nP(N,=n)

= Zn[P(Nth)—P(Nth+1)]
— ZP(Nth),

by partial summation (or Abel’s lemma). [This is the discrete analogue of
integration by parts. See e.g. a book on Analysis, or my homepage, M3P16
Analytic Number Theory, 1.3.] But {N, > n} = {S, <t}, so

E[N]=) P(S,<t)=Y Fi(t)=U(),
giving the first part; the second part follows from the result above. //

The renewal theorem
Renewal theory needs a distinction between two cases. If the X; are
integer-valued (when so are the S,), or are supported by an arithmetic pro-
gression (AP), we are in the lattice case, otherwise in the non-lattice case.
The next result looks like a differenced form of the last one. It is due
to David Blackwell (1919-2010) in 1953. We state it for the non-lattice case
and g < oo, but it extends to the lattice case and p = oo also.

Theorem (Blackwell’s renewal theorem, 1948). In the non-lattice case,
Ut+h)—U{t)— h/p (t—o0) Vh>0.

This famous result has a number of different proofs, but we do not include
one here (my favourite is only a few lines, but needs a prerequisite beyond
our scope here).

Blackwell’s theorem has a number of variants. The one we need (which
we also quote) is due to W. L. Smith and W. Feller. Recall the Riemann
integral (defined for functions on a finite interval), and the Lebesgue integral
which generalises it (defined for functions on e.g. the line, plane etc.). We
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need a new concept.

Definition. Divide the line into intervals I, , := (nh, (n+1)h]. For a function
zon R and = € I,,;, write

Zn = sup{z(y) 1y € Inn}, zn=inf{z(y) :y € Lnn}

Call z directly Riemann integrable (dRi) if [z, := [ Z,(x)dz is finite for
some (equivalently, for all) h > 0, and similarly for [ zj,, and

/zh—/gh—m (h —0).

This is the same as Riemann integrability if z is supported on some finite
interval, but for z of unbounded support is stronger than Lebesgue integra-
bility: z is dRi iff it is Lebesgue integrable, and both [z, and [z, have a
common limit [ z as h — 0. Condition dRI will hold whenever we need it.
We quote that dRi needs z bounded and a.e. continuous (w.r.t. Lebesgue
measure), and that this plus z of bounded support implies dRi. Also, z non-
increasing and Lebesgue integrable imples dRi.

The renewal equation for F' and z (both known) is the integral equation

Z(t):z(t)+/otZ(t—u)dF(u) (t>0): Z=z+FxZ. (RE)

Here F' (for us, the lifetime distribution above) and z are given, and (RE) is
to be solved for Z.

Theorem (Key Renewal Theorem; W. L. Smith, 1954, 1955). If z
in (RE) is dRi, then for U the renewal function of F' as above,

1 o0
limy o Z(8) = limy oo (U # 2)(£) = / +(2)da.
K Jo
The proof of the Key Renewal Theorem from Blackwell’s Renewal The-
orem is not long or hard, but as it is Analysis rather than probability or
insurance mathematics, we omit it. For a proof, see e.g. [RSST, 6.1.4 p216-
219.
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84. The Ruin Problem.

Consider the cash flow of an insurance company. The premium income
comes in from the policy holders at constant rate, ¢ say (to a first approx-
imation: the company hopes to attract more policy holders, and premium
rates will typically vary on renewal — but are constant during the lifetime of
the policy). So income over time ¢ is ct. If the company has initial capital u,
its capital at time ¢ is thus v+ ct. Meanwhile, claims occur. We model these
as occurring at the instants of a Poisson process of rate A, the claims being
independent and identically distributed (iid) with claim distribution F', with
CF ¢, mean p and variance 2. So the number of claims over the interval
[0,¢] is N(t), which is Poisson distributed with parameter At: N(t) ~ P(At).
So by the Theorem of VIII.2 above, the total claim has mean A\ut. Thus cash
comes in at rate ¢, but goes out at rate Ap. This simple argument suggests
— what is indeed true — that a necessary condition for the company to avoid
bankruptcy is

c> A\ (NPC)

(NPC for ‘net profit condition, below): money should come in faster than it
goes out. The proof is by the Strong Law of Large Numbers (LLN, as above).
In the critical case ¢ = Ap the company is ‘balanced on a knife-edge’, and
will soon go bankrupt.

The company thus must have ¢ > Au, so we assume this from now on.
But, any insurance company has only finite funds; it may face arbitrarily
severe runs of bad luck; combining these, bankruptcy is always a possibility.
(Indeed, this is true for all companies, not just insurance companies! This
is why bankruptcy needs to be recognised as a possibility, and governed by
bankruptcy law. This varies from time to time and from country to country
— a very interesting and important subject, but not one we can pursue here.)

Clearly the company’s best defence against bankruptcy is to have a large
cash reserve u, to act as a buffer, or ‘insurance policy’, against such runs of
bad luck. Clearly the probability of ruin — ruin probability — decreases with
u. How fast? The classical ruin problem is to investigate this question.
Note. We may if we wish take ¢ = 1 for convenience. This (slightly) simpli-
fies the formulae. It amounts to changing from real time to operational or
business time — looking at the situation in the time-scale most natural to it.
Recall that there are no natural units of time or space (except the Planck
scale, at subatomic level, for those with a background in Physics!): time is
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measured in seconds, minutes, hours, days (60 s to the m, 60 m to the h, 24
h to the day — pre-decimal), and length in metres (metric system — mm, cm,
m, km) or inches/feet/yards/miles (Imperial measure) — neither is natural,
both are conventional.

The Net Profit Condition (NPC)
With ¢ the premium rate, X; the claim sizes and W; the inter-claim waiting
times, write

Zz' = Xz — CWi.

Then
E[Z;] == E[X;] — cE[W;] = u— ¢/

The first term on the right measures money out (of the company), the second
measures money in. To avoid bankruptcy we need (‘more in than out’)

E[Z]:=E[X)] —cE[Wi|=p—c/A<0:  ¢>p (NPC)

This is the net profit condition (NPC') above. For as we have seen, Ay is
the claim rate (rate at which cash goes out to claims); ¢ is the premium rate
(rate at which cash comes in, through premiums); we need (NPC) — ‘more
in than out’ for survival.

Safety loading and premium calculation

The first duty of any company is to stay solvent — to avoid bankruptcy.
To do this, an insurance company has to have its premium rate ¢ > pA so
as to satisfy (NPC). But, like any other business, the insurance business
is competitive. If premiums are too low, the firm goes bankrupt (above)
because its premium income fails to meet its outgoings on claims. But if
premiums are too high, the firm will not be competitive with other firms;
over time, it will lose market share to them, and will eventually go bankrupt
(or otherwise go out of business — e.g., be taken over) as premium income
declines to be too small to meet overheads. So the firm needs to take a policy
decision as to how much to charge in premiums. This is measured by the
safety loading (SL), p, defined by

EXi]
E[Wi]

Thus p > 0 in (SL) is equivalent to (NPC).

c— A\

c=(1+p) i

=1 +p)Ap: p = (SL)

12



5. Lundberg’s inequality

Before, we used the characteristic function (CF), defined for a random
variable X by ¢(t) := E[eX], for t real. But we now find it convenient to
use real numbers, and switch to the moment-generating function (MGF),

M(s) := E[e*¥].

This is certainly defined for s = 0: M(0) = E[e°] = E[1] = 1. But it may
not be defined (finite) for all (or even any) s # 0. (Example: the exponential
distribution E(A) with parameter A has MGF A/(A — s), but this is only
finite for s < X\.) We now assume the small claim condition (SCC),

M(s) := E[e**'] < 0o Vs € (—s0,50), for some sq > 0. (SCC)

Note. 1. This condition implies that the MGF is holomorphic (analytic) in
a neighbourhood of the origin in the complex s-plane (indeed, in an open
vertical strip in the s-plane containing the origin. This means that the MGF
behaves very well here, and we can use the methods of Complex Analysis
(M2P3). The bigger this strip, the better; what limits the strip is the tail
1 — F of the claim-size law F' — that is, the large claims (hence the name
‘small-claims condition’). So, the bigger sy > 0, the better.

2. (SCC) implies that the tail of X; decays exponentially. For (Markov’s
Inequality): for s € (0,s¢) and x > 0,

M(s) = E[e’™'] > E[e*; X| > 2] > e E[1; X| > x] = e*"P(X| > x) :

P(X; >z) <e *M(s) Vo > 0.
Differentiating the MGF twice (and writing X for X; for convenience):

M(s) = E[e*X],  M'(s) = E[Xe*X],  M"(s) = E[X?*¥] > 0.

Also, the MGF M(s) is smooth (we can differentiate it as often as we like,
where it is defined). So its graph has a tangent, and as M” > 0, the tangent
s increasing — the graph bends upwards. Such functions are called convex.
Also, as M(0) = 1, the graph goes through 1 at the origin. Now smooth
convex functions can intersect any line at most twice (e.g., a parabola may
not cut a line, or can cut it once (double point of contact), or twice, but not
more).
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The crucial assumption is that M (s) cuts the line y = 1 twice, once (nec-
essarily) at the origin and once at a positive point .

Definition.

The Lundberg coefficient (or adjustment coefficient) r, which we assume
to exist in what follows, is the point r > 0 (we assume r exists; it is then
unique) such that r = s satisfies

My, (s) == Elexp{s(X; —cW1)}] = 1. (LC)
The right is (writing X, W for Xy, W1) Mx(s). My (—c ) Now as W ~
E(X), W has Laplace-Stieltjes transform (LST) Ele™"] = My (—t) = [[° e ™ Aeda =

A/(A+t). So the defining property of the Lundberg (adjustment) coefficient
is (writing M for My for short)
M@»).HACT:L M(r):“;’”zu% (LC")
As s increases, M(s) T oo; M(s) may well increase to +00 as s increases
to some finite limit, s; say. So (from a graph of M(.)): the bigger r is
(r < so < s1), the better. Also, the bigger u is, the better. So, the bigger
ru is, the better. So the ruin probability ¢ (u) with initial cash reserve u
decreases with ru. How nice it would be if this decrease were exponential
(fast, and easy!) Fortunately, this is just what happens, as the next two
classical results show.

Theorem (Lundberg’s Inequality, 1903, 1926). Assuming that the
Small-Claims Condition (SCC') holds and that the Lundberg coefficient r in
(LC) exists, the ruin probability ¢ (u) with initial capital u and over all time
satisfies

P(u) <e ™.
Proof. Write
Sn:Z1++Zn, ZZ:XZ—CWZ

Then S = (S,) is a random walk, with step-lengths Z; := X; — cW;. As
the ruin probability increases with time, the ruin probability ¢ (u) is the
increasing limit of the ruin probability ), (u) with just the first n claims X;
and waiting times W; involved:

n(u) = P(maxi<g<p, Sk > u) = P(Sk > u for some k € {1,---,n} ).
(RWo)
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We prove that
Yp(u) <e ™  VneNu>0. (%)

The result follows from this by letting n — oo; we prove (x) by induction
(on n). Note that letting n — oo in (RW,,) above,

Y(u) = P(sup,, S, > u). (RW)
The induction starts, by Markov’s Inequality:
(G0 <u> < e_Tule (T) =e ',

by definition of the Lundberg coefficient: My, (r) = 1.
Assume that (%) holds for n, and write F for Fz,, the distribution function
of Z;. Then

¢n+1<U) = P(maX{Sk1§k§n+1}>u)

= p1+ Do,

say.

We now make our first use of the renewal argument, which will allow us
to reduce the proof of our main results to an application of the Key Renewal
Theorem. The idea is to condition on the value of the first claim 7, and let
the process ‘renew itself” with the first claim, starting afresh thereafter. So,
starting the random walk after Z; = x in the po-term above and conditioning
on the value x of 7y,

pa = / P(maxy<p<n(x + Si) > u)dF (z).
(_oovu}

In full, this is a use of the Conditional Mean Formula. For an event A, the
random variable I, (its indicator function: 1 if w € A, 0 if not) has mean

E[14) = P(A).
Then conditioning on information B (size of first claim here),

P(A) = E[l4] = E[E[14]8B]].

P = / dF(x) < / "W (z),
(u,00) (u,00)
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as r > 0, while
ps = / P(maxj<g<n(z + S,) > u)dF(x)
(_Oovu]

_ /(_ nlu = D))

< / e"@WdF(z) (by the induction hypothesis).
(7007u]
Combining the domains (—oo, u] and (u, c0) of integration here,

p1+p2 < / e WAF () = e_T“/emdF(x) =e "™M(r)=e"",

—00

as M(r) = 1 by definition of the Lundberg coefficient r, completing the in-
duction. //

Example: Ezponential claims.

Recall the exponential distribution F(\) with parameter A, which has
mean 1/X and MGF A\/(\ — s). With the arrival process Poisson with rate
A as above (so the inter-claim waiting times are F()\)), consider now the
simplest case, when the claim sizes are also exponential, E(v) say. So W; has

MGF ~/(y — s), cW; has MGF ~/(y — ¢s), and Z; = X; — cW; has MGF

v A

Mz<8) = Mx(S)Mcw<—S) = v — S'/\ +CS'

As usual, we assume the Net-Profit Condition (N PC):
E[X]|/EW] =)\~ <ec.
Then the Lundberg coefficient r is the (unique, positive) root of

v A
M = . =1
2(7) Yy—1r A4ecr

This is a quadratic,

Q(r) == —[(cr + N (=r+y) =M =cr* +(A—cy)r=r(cr+A—cy) =0,
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with positive root
A
r=vy——>0,
c
by (NPC). In terms of the safety loading p,

_ EX] A
= W(l +p) = ;(1 +p).

So in terms of the safety loading p rather than the premium rate c,

r:fy(

Y

p
1+p)
and the Lundberg inequality is

U(u) < exp{—uyp/(1+p)}.

This is nearly exact: in this case, there is a constant C' with

Y(u) = Cexp{—uyp/(1 +p)}.

Note. This example is unusually simple: in general, there is no closed form
for r, and we have to find it by numerical methods. This is typically the case
for solutions of transcendental (rather than algebraic) equations.

6. The ruin problem and the renewal equation

Here and in §7 we follow Mikosch [Mik, p.166-171]. First, note that F
has mean

[i= /OoomdF(m) :—/Oooxd(l—F)(x).

Integrating by parts, the integrated term vanishes, giving

= /000(1 ~ F(2))da.

Thus (1 — F(z))/p is a probability density on (0,00), of G, say:

:1—F(x)

dG(x) .

dx
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(the notation F7p, for ‘integrated tail of F”, is also used).
With initial capital u, write 1(u) for the probability of ruin as above,
¢(u) :=1—1)(u) for the probability of non-ruin. Then by (RW),

Y(u) = P(sup S,, > u), o(u) = P(sup S, < u).

The key to the relevance of renewal methods here — the renewal argument
we used before — is that the capital process renews itself at the time of the
first claim: if this is at time W7 = s and of size X; = z, it begins again,
with initial capital u+ cs — x (of course if this is negative, the company goes
bankrupt when it receives its first claim!). We can condition (as above) on
the time W, (density Ae™**) and size X (distribution F) of first claim.

o(u) = P(S,<uV¥n>1)
= P(Z1<u,S,—Z; <u—2Z;VYn>1)=E[(..)]
= FE[EI(Z <u,S,— 7y <u— Z; ¥Yn > 2|Z)]] (Conditional Mean Formula)
= FE(Z, <uw)E[I(S, — Z1 <u—Z, ¥Yn > 2|Z)]] (taking out what is known)
— Bl(Z < w)P(Sy— Z < u— 7 ¥n > 2|20)] (EII()] = P()
— El(Z < W)P(T,— 21 <u— 7, ¥n > 12)],

writing T, :== Zy + -+ + Z,o1 = Spy1 — Z1. But T, is independent of 7,
and given Z; — z = x — cw, T, has the same law as 5,,. Recall X; ~ F,
W, ~ E()\) with density Ae™**. So doing the conditioning,

o(u) = EI(X;—cWy <u)P(T, <u—(X;—cWh)|Zy)]

= / )\e_)‘wdw/ dF (z)I(z — cw < u)P(S, <u—(x —cw) Vn > 1)
0 0

_ /0 T e M / T AP (2 — cw < W)b(u + cw — )

0

(this is the renewal argument again). Thus ¢(u) satisfies a linear integral
equation, which we shall show is ‘almost’ of renewal-equation type (the key
is to make it exactly of renewal type).

The limits are 0 < w < 00, 0 < x < u + cw:

P(u) = /0 T e /0 . dF(x) - ¢(u + cw — ).
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Write z := u + cw, and change from w to z: limits 0 < z < z, u < z < 00,
dw=dz/c,w=(z—u)/c, —Iw = u/c— \z/c:

P(u) = %e*"/c /u " dre e /0 ) dF(z) - ¢(z — ). (%)
= /0 ¢(z — x)dF () :

A > —AZ/C
o(u) = Ee)‘“/c/ e eq(2)dz.

So ¢ is differentiable, as the exponential and the integral are. So differenti-
ating (%),

Write

then (%) becomes

#0) = 2000 = S0 e [ gl a)aP (o)

Cc

(the first term from differentiating the exponential, the second from differ-
entiating the integral):

00 = 200w = % [ ou—2) dF(a).

Now integrate this:

qﬁ(t)—qﬁ(O)—%/thﬁ(u)du:——/ du/ dF (z) - d(u — ).

Integrating by parts,

/O " 5 — 2)dF(z) = 6(0)F(u) — /0 " e — w)F(2)de

(as F'(0) = 0). Combining,

/¢ du——d))/ du+/du/dx¢xu x).

The limits here are 0 < x < u < t. So interchanging the order of integration,
the limits become u € (z,t), € (0,t). This gives

=2 [ otwtn=260) [ Fyau= [ F@)lott—a) o))t

C
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The gb( ) terms (2nd and 4th on RHS) cancel, and the first integral on RHS
is fo x)dzx, giving

(1) /(bt—a:l— /¢t—:c

or by (SL) (§4),

o0 =00 = G [ ot - P,

:1+p/¢ (x),

recalling GG (the integrated tail distribution at the beginning of §6).

By the NPC (§4), ¢ > Ay, so E[Z] = E[X]| — cE[W] =u—c/XA <0. So
by LLN, S,, := "] Z — —o0 (as n — 00, a.s.), S0 sup,, S, < 0o a.s. So the
non-ruin probability ¢(u) 11 as u — oo. This allows us to find ¢(0) above:

1
(1+p)

Letting u 1 oo, Lebesgue’s monotone convergence theorem (we quote this
from Measure Theory) allows us to interchange limit and integral here:

¢(u) — ¢(0) =

/000 Iz < u)p(u — x)dG(x).

00 = i | 106 = s 00) =

1+ p +p) (1+p)

Combining, we obtain the integral equation for the non-ruin probability ¢(u):

o) = =t | e

_ P 1 ' 1-F)
B (1+P)+(1+P)./0 N

We re-write this as the corresponding integral equation for the ruin proba-

bility ¢(u) =1 — ¢(u):

1 * (1 — F(x) (u—2) ())x**

(as (1 — F(z))/p is a probability density, so integrates to 1).
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7. Cramér’s estimate of ruin

The above integral equation (xx) for ¢ (u) is of renewal-equation type,
except that, as (1 — F(x))/p is a probability density, the factor 1/(1+p) < 1
turns it into a sub-probability (or defective) density.

Next, from the existence of the Lundberg coefficient > 0in (LC), (LC"),

cr

M(r) = /Ooo AP (z) = — /Ooo i1~ F)(x) =1+ 5.

Integrating by parts (as above), the integrated term is 1, giving

| 4= Fepemte = = s o

by (SL). So

A . 1
S(1 = F(z))e Ty
is a probability density on (0, 00).

The following result was obtained by Cramér in 1930, by complex-variable
methods (Cauchy’s theorem). Complex-variable methods turn out not to be
natural here. The right tools are real analysis (direct Riemann integrability,
key renewal theorem) and probability theory (renewal theory); the link was
made by W. Feller, and is in his book (1966, 2nd ed. 1971).

(1 - Fla))e

Theorem (Cramér’s estimate of ruin, 1930).

For the Cramér-Lundberg model, under the Net Profit Condition (N PC)
and the Lundberg condition (LC'), with r the Lundberg coefficient and ¢ (u)
the probability of ruin with initial capital u,

e"Pp(u) — C - P(u) ~ Ce™™ (u — 00),
where the constant C' is given by

c— A\t

¢= Ar [0 wer (1 — F(x))da

Proof. Multiply (xx) by €™, and regard it as an integral equation in ¢ (u)e™:

e [TO=F@), L ey (L= F(2)
e = [ LT M- st s
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This is now an integral equation of renewal type (RE). So by the Key
Renewal Theorem, its solution i (u)e™ has a limit, C' say, as u — 00, giving
the first (and more important) part.

To identify the limit C: from the Key Renewal Theorem, C'is the integral
of the first (z-) term on the right, divided by the mean of the probability
distribution in the convolution. The integral here is

[ e [T pEpa = L0 Feadater

_ L /00(1 ~ Py + - /Ooo (1 — F(u))du

T
c c— A
by [

r A A

by the calculation above. So, in the notation of the Key Renewal Theorem,

> Ac—Au
dr = —. .
/0 2w)dz c A

The mean of this density (the ‘u’ term in the Key Renewal Theorem) is

c

A /OOO e (1 — F(x))dz.

So C' is their ratio:

c— A\
C = = .
Ar [ zert(1 — F(x))da //
Note. In addition to the Key Renewal Theorem, the crux in the above is the
change of measure

F = F(dz) — %(1 — F(z))e™dx.

This is also called exponential tilting and the FEsscher transform, after the
Swedish actuary Fredrik Esscher in 1932. (It also occurs in large deviations,
important in many areas of probability, statistics and statistical mechanics.)
This change-of-measure technique is of course also related to that in Gir-
sanov’s theorem in mathematical finance (Ch. VII).
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8. More on insurance.
Non-life insurance: regression and covariates
House insurance

If one insures a house’s contents, one of the the principal risk factors the
insurance company will consider (and the easiest one to measure) is the risk
of burglary. This varies greatly according to the nature of the area: affluent
areas have more to attract a burglar, but tend to have better burglar alarms;
poorer areas tend to have higher crime rates, etc. If one insures a house as a
building, the principal risk factor is subsidence. This depends largely on the
geological conditions in the area (and so are indicated by the postal code),
but also on the quality of the building at the time the area was developed
(which can be assessed from past claims). Risk of fire is important in both,
but harder to assess (it depends on people not leaving chip-pans on the
cooker when called to the door or the phone, etc.). These subsidiary bits of
information are called covariates; the way to use them is called regression.
This kind of statistics is very useful in the actuarial /insurance profession.
Motor insurance

Motor insurance rates vary widely. Of course, the most important single
thing is the claims record of the insuring motorist — a good record is worth
money, in a no-claims bonus. But, the type of car is also relevant (sports
cars are penalised); so is the type of driver (young men are penalised), the
annual mileage, the type of use (private or for hire), etc.

Life insurance

Eventual death is certain, so life insurance is largely a matter of covariates
such as: age, sex, medical record, profession etc. The tools involved come
under Survival Analysis: hazard rates, etc. Following the introduction of the
proportional hazards model by Cox in 1972, martingale methods have been
widely used. This is a very interesting and useful area.

To give some flavour of Survival Analysis: suppose that a person survives
for time t. What is the chance that he dies by time ¢ + dt? With T" as the
lifetime, with distribution function F on (0, 00), density f and tail F(z) =
1 — F(z), this is

PT<z+dx|T >z) = Pla<T<az+dx)/P(T > )
(F(z +de) = Fx))/(1 = F(z))

~ fx)de/(1 = F(z))
= h(z)dz,
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say, where h(x) has the interpretation of a hazard rate. So

h(z) = f(x)/(1 = F(z)).
Integrating,

| — F(z) = exp] /0 Ch(wydul s F(z) = 1— exp] /0 " h(u)du

The simplest case is constant hazard rate, A say, leading to the exponential
distribution E(A), and so to the Poisson process Ppp(\) of VIL.2:

h(z)=),  Fla)=1—e?* (2>0): F=E\).

Now hazard rates vary according to many factors, or covariates: age (older
people die out faster than younger ones); medical history; weight, smoking
status, occupation, marital status (married people live longer!), etc. So appli-
cants for life insurance will be asked to fill out a form detailing the covariates
the insurance company deems relevant; assessing the premium depending on
these covariates involves regression, as with the non-life examples above.
Reinsurance

Reinsurers play a major role, in the modern economy, beyond insuring
insurers. Reinsurance companies act as de facto regulators: they monitor in-
surers and put a price on their heads. The government need have no say, as
‘it’s money that talks here’. A good reinsurance premium implies confidence,
and makes it easier for the primary insurer to raise capital on the open mar-
ket. Insurers hold, to cover losses, a mix of cash reserve, investment reserve
and reinsurance. (It used to be that the reinsurance pot was biggest, but
that is changing as investment becomes more affordable.) The basic fact is
that the balance of the three sources of capital is important, and precarious:
the reinsurance company watches the cash position of the client like a hawk.
Lender of last resort

Companies may fail, and disappear (leaving debts behind them, as well
as lost jobs, etc.). But countries cannot disappear (even though sovereign
states have on occasion defaulted on debt, split up, etc.). The ultimate un-
derpinning (in so far as there is one) here is provided by the state, in the
form of the central bank — the Bank of England (BoE) in the UK, the Fed-
eral Reserve Bank (Fed) in the USA, the European Central Bank (ECB) in
the EU, and indeed the World Bank at UN level. The phrase ‘lender of last
resort’ is used to convey this.
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Postscript to Ch. VIII, Insurance Mathematics

As noted in VIIIL.1, the actuarial profession regulates itself carefully. The
Institute of Actuaries sets professional exams, which intending actuaries must
pass in order to become qualified. In order to earn exemption by passing a
course at university, the university course (particularly its syllabus) must be
accredited (validated) by the Institute. (The situation is similar in the ac-
countancy profession.)

The two main centres for actuarial work in the UK are London and Ed-
inburgh. In London, the City University was an early centre, followed later
by the London School of Economics (LSE). The LSE’s Risk and Stochastics
MSc has now become a major producer of actuaries. In Edinburgh, a similar
role has long been played by Heriot-Watt University.

As a glance at the skyline in the City of London reveals, London is a
major world financial centre. The financial services industry is one of the
UK’s major industries (thirty years ago manufacturing industry predomi-
nated — recall that the UK pioneered the Industrial Revolution — but this
is no longer so). Most of the leading UK Mathematics Departments have
MSc programmes in Financial Mathematics. I think it is fair to say that
UK academia provides well for the needs of the financial services industry.
I think it is also fair to say that it provides less well for the needs of the
actuarial profession and the insurance industry. This is a great pity (recall
from VIII.1 the UK’s historic leading role here).

I am very pleased that Insurance Mathematics is included in the syllabus
for this course. I would urge anyone taking this course who does not already
have a clear career path mapped out ahead of them to consider actuarial
work (which I would probably have gone into myself had I not been sucked
into academia). The work is very useful, and very interesting.

It is worth noting that the boundary between the mathematics of finance
(Ch. I-VII) and insurance (Ch. VIII) has become quite blurred in recent
years. This is partly because, following the Crash of 2008 and a number of
major defaults, default in finance is seen as analogous to death in life insur-
ance or a claim in non-life insurance. The two areas are no longer separate,
as they once were, and the trend towards further interaction will no doubt
continue. So it does not have to be an ‘either or’ choice for you!

NHB
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