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MPC2: ASSESSED COURSEWORK SOLUTIONS 2011

Q1.

Y — 2y x4 2y/2* = xe”. (N)
For y; = z, o/ — 2y /x + 2y /2* = —2/x + 2x/2®> = 0. For y, = 22,
vy — 2ub/x + 2yp/x? =2 — 2.2z /x + 22 /x* =2 — 4+ 2 = 0. So the general
solution to the homogeneous equation (H) is ¢,z + cow®. By variation of
parameters (VP), take a trial solution y = uyy; +usys. The two VP equations
are

whyr + upys =0 uyr + uba? =0, (1)
Yy + Uy, = Tt uy + 2zuy = ze®. (2)

7(1) — 2(2)” gives (22 — 22%)uly = —22e®, u) = €%, uy = €*. Then
uy = —zluh/x = —ze®, uy = — [we¥dr = — [zde® = —we® + [eFdr =
—ze® 4+ €% So Y = uy; + ugys = —x2e® + ze® + 12e® = we®. So the general

solution to (V) is
Yy =c1x+ cox® + ze®.

Q2. (i) By de Moivre’s theorem, ¢ = ()" ie. writing ¢ := cos¥,
s :=siné,

cosnf +isinnd = (c+is)* = " + Z(T) " ls — (Z) 25

Take real parts, and use s? = 1 — ¢%:

cosnb = ¢* — <Z> A1 - )+ (Z) A1 = 2. = T,(cosb),

where 7T, is a polynomial of degree n.
(ii) For n =7,

cos 70 = ¢ — (;) Al —c?)+ (Z)c?’(l —c*)? - (g) c(l —c?)?

=" —21°(1 — ) +35¢3(1 — 2¢ 4+ ¢*) — Te(1 — 3¢ + 3¢t — ¢°)
=c'[1+21 435+ 7] +c°[-21 — 70 — 21] + *[35 + 21] — Tc :
cos 70 = 64c” — 112¢° 4 56¢% — Tc Ty (z) = 642" — 1122° 4 562° — Ta.



Q3. The Laplacian in spherical polars with spherical symmetry is A =
D,, + (2/r)D,. So for u = f(r+ct)/r,

Au =Dyl f(r+ ) + 2Dy f(r +ct)) = Dy () + 2D, 1),
say. X 1 1
Dr(;f) = —ﬁf + ;fly
1 2 1 / 1 / 1 " z _ E / 1 "
Drr(;f):ﬁf_ﬁf_ﬁf +;f _T3f 7’2f —|—Tf7
2 1 2 2 1 2 2

(Drr+;DT)(;f):ﬁf_ﬁf,+;f/,_ﬁf+ﬁf/:f,//r- (1)

But

1 1 1 1
Dt(;f(r +ct)) = c;f'(r + ct), Dtt(;f(r +ct)) = CQ;f”(T +ct). (2)
By (1) and (2), f(r + ct)/r satisfies the wave equation
Au = ¢ 2uy.

Interpretation: this represents an outgoing spherical wave of velocity ¢ with
initial wave profile f(r)/r.

Similarly with f = f(r —ct), so long as r —ct > 0, t < r/c (we must have
r > 0 in spherical polars.
Interpretation: this represents an incoming spherical wave of velocity ¢ and
initial wave profile f(r)/c, until it hits the origin.
So the general solution is

u= f(r+ct)/r+g(r—ct)/r,

with f and g arbitrary functions and ¢ < r/c if g is present.

Q4. The eigenequation is
|A = \| = 1 2-X 2 |=0.

Expanding by the first column, this is
B=XN[-AM2=A)+2]—[-2\+2]—[4—4+2)\ =0,
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(B3=N[A2 =22 +2] +2X —2 -2\ =0,
N NB 2+ N-6-2+2—-2]+[6—2] =0,
N 4+5N -8 +4=0, N —5X\2 8\ —4=0.
By inspection, A = 1 is a root, so (A — 1) is a factor:
N BA 8N —4=(A—1)(A2 +a)\+4)
say. Equating coefficients of A\ gives a — 1 = —5, a = —4, so
A=D1V —dA+4)=A-1)(A—2)*=0:

the eigenvalues are 1, 2, 2 (i.e. 1 single, 2 double).
A=1. Ax = z gives

31‘1+2.’L’2+21’3 = Ty, 2$1+21’2+2!L’3 :0,
I1+21’2+2l’3 = X9, I1+ZE2+2ZE3:0,

—T1 — X2 = I3, x1+$2—1‘320.

From the last two equations, x3 = 0. Then x; = —xz5. Taking z; = 1, an
eigenvector is

A= 2. Ax = 2z gives

3x1 4+ 229 + 223 = 211, T1 + 229 + 223 = 0,

x|+ 21’2 -+ 21’3 = 2272, T 2373 = 0,

—X1 — T2 = 2$3, xr1 + 2o+ 21’3 =0.
From the last two equations, x9 = 0. Then xy = —2z3. Taking x; = 1, an
eigenvector is
—2
r = 0
1

In each case, the eigenspace is one-dimensional.



