mpc2prob3.tex

PROBLEMS 3. 26.10.2011

Q1. Express each of the following in polar form: (i) i; (ii) 1 - i; (iii) $\sqrt{3} - i$; (iv) $(1 - i)/(\sqrt{3} - i)$.

Q2. Show that (i) $\sin(A+B) + \sin(A-B) = 2\sin A \cos B$; (ii) $\sin(A+B) - \sin(A-B) = 2\cos A \sin B$; (iii) $\cos(A+B) + \cos(A-B) = 2\cos A \cos B$; (iv) $\cos(A+B) + \cos(A-B) = 2\sin A \sin B$.

Q3. Let v, w be the solutions to the wave equation

$$y_{xx} = c^{-2} y_{tt} \tag{WE}$$

with BCs y(0,t) = 0, $y(\ell,t) = 0$ and ICs (i) v(x,0) = f(x), $v_t(x,0) = 0$ ($0 \le x \le \ell$), (ii) w(x,0) = 0, $w_t(x,0) = g(x)$ ($0 \le x \le \ell$) respectively. Let u be the solution satisfying the same BCs but with ICs

$$u(x,0) = f(x), \qquad u_t(x,0) = g(x).$$

Show that

$$u = v + w.$$

Q4. Show that the solution to the wave equation (WE) above satisfying the ICs

$$u(x,0) = h(x), \qquad u_t(x,0) = 0$$

is

$$y = \frac{1}{2}[h(x+ct) + h(x-ct)].$$
 NHB