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SOLUTIONS 2. 24.10.2011

Q1. (i) G is continuous;
(ii) Using prime for 9/0x (differentiation w.r.t. the first argument),
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Combining, G is the required Green function, as it has the required proper-
ties.

Q2. Draw an equilateral triangle ABC' with unit sides. Drop the perpendic-
ular from B to AC. This bisects AC, by symmetry, at D say. So ABD is
a right-angled triangle with other angles 7/3, 7/6 (or 30-60-90 in degrees).
Angle DAB, which is 7/3 by symmetry (the three angles of ABC' sum to 7)
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has cosine AD/AB = 1/2, by definition of cosine.

Q3. (i)
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Q4. Write
2=+ 1y = u, Z=x—1y =".
Then
u—+v =2z =10, xr=2>5,
w=zz=z =2 +y’  40=25+y°, =15 y=+15.
So u,v =5+ iv/15.

Q5. (i) After a few trial values, one finds that the given cubic p(z) has
p(4) = 0. So it has  — 4 as a factor.
(ii) Then

p(z) :=2° — 92 +28 = (z — 4) (2 + 4z + 7)
(the constant term +7 is clear on comparing constant terms left and right;
that the coefficient a of x in the quadratic is 4 comes from comparing = terms
left and right: 7 — 4a = —9.
(iii) The quadratic has roots —2 = iv/3, so the roots of p(x) are 4, —2 +1i+/3.
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