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MPC2 MATHEMATICS FOR CHEMISTS
Professor N. H. BINGHAM, Autumn 2011
Huxley 6M47; 020-7594 2085; n.bingham@jic.ac.uk; Office hour Fri 9-10am

Lectures: 9-11am Wed, beginning 12 October;
Tutorials: Mon 5-6, Blackett 741 (except 14 Nov.), beginning 17 October.
Course website: My homepage, link to MPC2.

SYLLABUS

[. Inhomogeneous ordinary differential equations (ODEs) [Weeks 1,2]
I1. Complex numbers [Weeks 2-3]

IIT Partial differential equations (PDEs) [Weeks 3-5]

IV. Linear algebra [Weeks 5-7]

V. Fourier analysis [Weeks 7-9]

VI. Field theory: Vector calculus [Weeks 9-10]

Dramatis Personae: Who did what when [Week 10]

Recommended Texts.

There are innumerable books possible. It doesn’t really matter which one
you choose — but I strongly recommend you to find a book that suits you
and use it, otherwise you rely entirely on lectures. For guidance: any book
covering the six topics in the syllabus above, and with a reputable publisher
(e.g. Cambridge UP, Oxford UP, Springer, Academic Press) is probably OK.

Where I have used a book, I have often relied on an enduring classic:

H. MARGENAU and G. M. MURPHY: The mathematics of physics and
chemistry, Van Nostrand, 1943, Volume 1 (Volume 2 is also good but more
advanced).

One alternative for everything except Ch. VI is another enduring classic,
H. S. W. MASSEY and H. KESTELMAN, Ancillary mathematics, Pitman,
1959.

There is a good treatment of Ch. VI in
H. M. SCHEY: div, grad, curl and all that: an informal text on vector cal-
culus, 3rd ed., W. W. Norton.



I. INHOMOGENEOUS ORDINARY DIFFERENTIAL EQUATIONS
(ODEs)

The subject dates back to, e.g., Leonhard EULER (1707-1783) and the
Bernoullis. Recall: a differential equation (DE) is an equation involving a
function (y(x), say) and its derivatives, ¢/, 3" etc., to be solved for y. The
DE is ordinary (an ODE) if there is only one independent variable, = say (if
there is more than one, the DE is partial — a PDE; see Ch. III).

The DE is linear if y and its derivatives appear only to the first power
(e.g., no square terms y?, cross terms yy/, etc.). We confine attention to linear
equations here (non-linear equations are very important, but much harder).

A (linear) equation is homogeneous if y = 0 is a solution — or, with all
terms involving y , ¢/, ... on the LHS, the RHS is 0. With a general RHS,
g(x)say, the DE is non-homogeneous.

Differential notation. We write

dy

et or dy/dz,

as y or Dy. So D, or d/dx, or .’ ("prime”), denotes the operator of differ-
entiation, or differential operator. Similarly, the second derivative, or

d2y

d
Jg20 O d2y/dx2,:(—

2
dx) Y,

is written D2y, or y”, etc. We write this also as
dy = y'dx.

NB. Read dz, dy etc. as one symbol. So dx? above means (dz)?.

When the independent variable is time, t, it is customary to write df (t) /dt
as f rather than f/, and the second derivative as f rather than f”. This is
the one surviving feature of Newton’s notation for calculus (or fluxions, as
he called it — Sir Isaac NEWTON (1645-1723), Principia in 1687); the other
notation we use comes from Leibniz (G. LEIBNIZ (1646-1716)), including
the integral sign [, an elongated S for Summe (German for sum: integrals
are limits of sums).

General solutions. In a (linear) DE, the degree is the order of the highest
derivative of y — n, say. The simplest case is n = 1, a first-order DE. The
usual case in Physics, and Chemistry, is n = 2, second-order DE.
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To solve an nth order DE, we must integrate n times. Each integration in-
troduces an arbitrary constant (of integration), giving n arbitrary constants
(ACs) in all. To determine these, we need to be given conditions:

n = 1. y(xo) = yo (initial condition, 1C).
n = 2. y(zo) = Yo, ¥'(x0) = yp or y1 (ICs), or
y(xo) = Yo, y(x1) = y1 (boundary conditions, BCs).

Linear differential operators. A typical linear ODE will have the form

aoy + a1y’ + azy” = g(x).
The a; on the LHS may be functions a;(z), or constants. The LHS is

d d?
(a0 + o + azﬁ)ya or (ag+aD+ayD?)y, or Ly,

where
d2

d
L=ay+a— +a or ag+ a1 D + ayD?

dx dz?’

is a linear differential operator (often, not always, with constant coefficients).
Homogeneous DE:

Ly = 0. (H).
Non-homogeneous DFE:

Ly=g. (N).
For a DE (H) of degree n, we say that (H) has general solution (GS) y; if
(1> Lyl = 07
(ii) y; contains n arbitrary constants.
If yo is ANY solution of (N) — a particular integral (PI) — then

(i)
L(yy +vy2) = Ly + Ly (linearity of L)
= 0+g=g  (by (H)and (N)),
i.e. y1 + yo satisfies (N),

(ii) y1 + yo contains n arbitrary constants (as y; does). So y; + yo is the
general solution of (N):

GS of (N) = GS of (H) + PI of (N).



Principle of Superposition. If L is a linear DO and v, y satisfy (H), i.e.Ly =
0, then also y; + yo satisfies (H), as by linearity of L

L(yi +v2) = Lys + Ly =0+ 0= 0.
Similarly, any linear combination ¢y; + cay2 (¢; constants) is a solution:
L(ciyr + caya) = erlyy + caLy, =0+ 0 = 0.

Physically, one can see the Principle of Superposition at work with, e.g.,
water waves. The wave equation is linear (see Ch. III below); when the wakes
of two ships meet, they pass through each other and continue undisturbed.
Variation of Parameters (or of Constants).

This is a method of starting with a GS of (H) and finding a GS of (N).

n=1. E.g.,
1 3

/
——y=2x". N
y-y=w (N)
The corresponding (H) is
, 1 y 1
y——y=0; ==—; D(logy)=D(logz); logy=logxz+const, y=cux.
x y T
(H)
Now allow the constant to vary: ¢ = u = u(x), say:
y = ux, y' = u'x + u, fraclzy = u.
Combining,
/ 1 o
y — —y=1ux.
x
So
wr=2% W =2 u=2*/3+c
So

y=uzr =2"/3 + cx,

the GS of (N).

Check: v = 4x3/3+c, v —y/x = 423 /3+c—23/3+c = 23. So y is a solution,
and contains an arbitrary constant, so is the GS. Always check in this way!
n=2.

Ly = a(x)y” + b(x)y +. (v)y = f(z). (V)
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Suppose we know two independent solutions ¥, yo of Ly =0 (H). Take

Y = Uy + U2y (wi = u;(z)).

Then
y' = wy; + uays + (uiyr + usys).
Take
U Y1+ uyys = 0. (1)
Then
Y = iy + Uy (*)
So
y" = Uiy +uoys + wryy + usys.
So

Ly = ay’ + by + cy = (ay] + by; + c)us + (ayy + byy + ¢)us + auly] + auyys.
As y1, yo are solutions to (H), this reduces to
Ly = auhy) + auyys.

So (N),ie. Ly=g,is

ulyr + upys = g/a. (2)
Now (1) and (2) give us two simultaneous linear equations for two unknowns,
uj and u,. We can solve these, uniquely in general, because y;, yo are in-
dependent solutions (recall that simultaneous linear equations are uniquely
solvable in general, but may have no or infinitely many solutions — see Ch.
IV below). So integrating we get uy, us (involving two ACs), and hence we
get y = wiy1 + ugys.

Ezample.
y'+y=secx (:=1/cosz) (N)
(here we use := for ‘is defined to be equal to’; =: is read as ‘which defines’),
y'+y=0. (H)
Independent solutions cosz, sinz (Dsinx = cosz, Dcosz = —sinz, so
D?sin = —sin, D? cos = — cos). Take y = uj cosx + ug sin .
uy cosz + upsinx = 0, (1)
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—uysinz + uycosx = 1/ cos x. (2)

The determinant is cos? +sin? = 1 # 0, so a unique solution exists.
7(1)sinz + (2) cosa”:

uy(sin® z + cos® z) = 1, uy =1, Uy = .
From (2),
uy = —sinz/cosx, u = —/sinxdx/cosx = /dcosx/cosx = log cos .

So: GS of (N) =PI+ GS of (H) = ¢; cos x+ ¢y sin x+ cos x log cos x +x sin z.
Ezample. DE y" + My = f(x), ICs y(0) = 0, %/(0) = 0.

y" ==\, (H)

solutions y; = cos Ax, yo = sin A\x.
Y = Uy COS AT + ug sin Ax. (N)
uy cos Ax + uj sin Az = 0, (1)

uy(—=Asin \z) +uy(Acos Ax) = f(x), —ujsin z+u)cos Az = f(x)/\. (2)
7(1) sin Az + (2) cos Az
1 1 e
Uy = Xf(x) COS AT, Uy = X/ f(t) cos Atdt + co;
0

]_ T
AJo

1
uy = —uhsin Az / cos \r = —Xf(x) sin Az, wu; = f(t)sin Atdt + cq;

1 T
Y = Uy COS \XT+Us Sin Ax = X / f(){— cos Az sin At+sin Az cos At pdt+c; cos Az+cq sin Az :
0

Y = U COS AT + Us Sin A\x = /1\ /Om f(t)sin AM(x — t)dt + ¢1 cos Az + ¢ sin Az
As y(0) =0: ¢; = 0. By (%),
Y = wy] + uayy = ur(—Asin Az) + ug (A cos Ax).
As ¢ (0) =0, uz(0) =0, co = 0:

Y= i/ox f(t)sin A(x — t)dt.



