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Line, Surface and Volume Integrals

For a vector field a and a curve L joining points 0 and 1, write dℓ
for a small displacement along the curve L, of length ds. Then

a = axi+ ayj+ azk, dℓ = dxi+ dyj+ dzk = (
dx

ds
i+

dy

ds
j+

dz

ds
k)ds.

The line integral
∫
L σ.dℓ is the limit of sums from s = s0 (at a0) to s = s1 (at

a1), written ∫
L
a.dℓ =

∫ s2

s1
(ax

dx

ds
+ ay

dy

ds
+ az

dz

ds
)ds.

For a surface S, the surface integral of a vector field a over S is the limit
of sums a.dS, where dS is a vector of magnitude dS, the element of surface
area, in the direction of the (outward) normal n to S at the point, written∫ ∫

S
a.ds.

The volume integral of a scalar field ϕ over a region V in 3-space is the
limit of sums ϕdV , where dV is the element of volume at a point, written∫ ∫ ∫

V
adV.

Flux.
For a vector field, a, the flux of a across an element of surface area dS is

defined as
a.ndS,

where n is again the unit normal. The (total) flux across a surface S is the
limit of these sums, the surface integral∫ ∫

S
a.ndS.

For S a small cube, with opposite corners (x, y, z) and (x+dx, y+dy, z+dz),

1



the net flux in the x-direction is

[a(x+ dx, y, z)− a(x, y, z)]dydz = ∂a/∂x. dxdydz,

to first order. Similarly for the y- and z-directions. So the total flux is

(∂a/∂x+ ∂a/∂y + ∂a/∂z)dxdydz = div a dxdydz = div a dV,

to first order. So

div a = lim
dV→0

1

dV

∫ ∫ ∫
dS

a.ndS :

the divergence is the rate per unit volume at which flux leaves.
This can also be used as a definition of the divergence.
Note. We have seen this argument before, when we derived the heat equation.
We considered the flux of heat (per unit time) out of a small slice of a bar,
in just this way.
So: ∫ ∫

dS
a.ndS ∼ div a dV,

both sides being the flux out of s small surface dS containing volume dV .
Now take a large surface S, enclosing a volume V . Subdivide S into a

large number of small surfaces dS – for example, small cubes of sides dx, dy,
dz. Whenever two cube faces coincide, the contributions of the common face
to the sum of all the

∫ ∫
dS a.nds cancels.

We are left with the sums of the contributions from the exterior of the
surface (all contributions from the interior cancelling, as above). This sum
is

∫ ∫
S a.ndS, by definition of surface integral. But the sum of diva dV is∫ ∫ ∫

V divadV , by definition of the volume integral. This gives:
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Divergence Theorem (or Gauss’ Theorem: C. F. GAUSS (1777-1855)
in 1813): ∫ ∫

S
a.ndS =

∫ ∫ ∫
V
divadV,

where surface S bounds volume V .

Electrostatics.
The (electrostatic) potential V at a point P = (x, y, z) is the work required

to bring a unit charge from infinity to P . The (electrostatic) field E at P is
the force on a unit charge at P . For neighbouring points P , Q,

dV := VQ − VP = work done to bring a unit charge from P to Q

= −work done by field = −E.ds,

with ds the line element from P to Q. Using

dV =
∂v

∂x
dx+

∂v

∂x
dy +

∂v

∂x
dz,

E.ds = E1dx+ E2dy + E3dz,

E1 = ∂V/∂x, E2 = ∂V/∂y, E3 = ∂V/∂z :

E = −gradV.

Gauss’ Law.∫ ∫
S
E.dS = 4π × charge included within S = 4π

∫ ∫ ∫
V
ρdV,

where ρ is the charge density.

The proof uses solid geometry (the solid angle subtended at a point is
4π). We omit it (see any book on Electromagnetism).

But by the Divergence Theorem,∫ ∫
S
a.ndS =

∫ ∫ ∫
V
divadV.

Combining, ∫ ∫ ∫
V
divadV = 4π

∫ ∫ ∫
V
ρdV.
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This holds for all volumes V , so the integrands must coincide:

div E = 4πρ.

But E = −gradV , so

divE = −div grad V = −∇2V = −∆V,

the Laplacian of the potential. So

∇2V = −4πρ

(POISSON’S EQUATION, Ch. III: S. D. POISSON (1781-1840) in 1813).
In particular, if there is no charge,

∇2V = 0

(LAPLACE’S EQUATION, CH. III: P. S. de LAPLACE (1749-1827),Mécanique
Céleste (1799-1825, Vols 1-5)).

Magnetism.
Similarly for the magnetic field H and magnetic potential Ω:

H = −grad Ω.

Maxwell’s Equations (J. C. MAXWELL (1831-1879) in 1861).
With c the ratio of the electromagnetic unit of charge to the electrostatic

unit of charge (c = 3 × 105 km/sec, or 3 × 101] cm/sec), with no charges or
currents, and writing Ḣ for ∂H/∂t, etc.):

c curlE = −Ḣ, c curlH = Ė,

div E = 0, div H = 0.

Take the time-derivative of the first equation:

c curl Ė = −Ḧ.

This and the second equation give

c2 curl curlH = −Ḧ.
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But
curl curlH = grad div H−∇2H,= −∇2H

as div H = 0 from the third equation. So

c2∆H = Ḧ.

This is the wave equation with velocity c. Similarly for the electrostatic field:

c2∆E = Ë.

Now the speed of light is also c. 3× 1010 cm/sec! This suggested Maxwell’s
electromagnetic theory of light: light is an electromagnetic phenomenon (this,
with Faraday’s discovery of electromagnetic induction, is one of the two great-
est pieces of Physics of the 19th century).

The Curl Theorem.
The curl can be defined as the vector with component in direction n

n.curl a = lim
dS→0

∫
dC

a.ds,

where dS is a small surface area perpendicular to n with bounding curve dC.
It can be shown that this new definition of curl agrees with our earlier

one. This new definition is more convenient for the proof of the Curl Theo-
rem (Stokes’ Theorem) below.

CURL THEOREM (STOKES’ THEOREM: Sir George STOKES (1819-
1903) in 1854). ∫ ∫

S
(curl a).ndS =

∫
C
a.ds,

where σ is a vector field and S a surface with bounding curve C.

Proof. Decompose S into many small surfaces dS with bounding curves dC.
For each of these, by the above definition of curl,∫

dC
a.ds ∼ (n.curl a)dS.

Summing the RHS, we get ∫ ∫
S
(curl a).ndS.
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Summing the left: all contributions cancel, except for those on the boundary
C, which sum to ∫

C
a.ds.

GREEN’s THEOREM (George GREEN (1793-1841) in 1828, Essay
on Magnetism ...).∫ ∫ ∫

V
(ϕ1∇2ϕ2 − ϕ2∇2ϕ1)dV =

∫ ∫
S
(ϕ1

∂ϕ2

∂n
− ϕ2

∂ϕ1

∂n
)dS

for scalar functions ϕi, ∂/∂n normal derivatives to a surface S bounding a
volume V .

Proof. By the Divergence Theorem,∫ ∫
S
(ϕ1∇ϕ2).dS =

∫ ∫ ∫
V
div(ϕ1∇ϕ2)dV

=
∫ ∫ ∫

ϕ1∇2ϕ2dV +
∫ ∫ ∫

(grad ϕ1).(grad ϕ2)dV

(”differentiation of a product” – check). Interchange ϕ1 and ϕ2 and subtract:∫ ∫
S
(ϕ1∇ϕ2 − ϕ2∇ϕ1).dS =

∫ ∫ ∫
ϕ1∇2ϕ2 − ϕ2∇2ϕ1)dV.

But

∇ϕi.dS =
∂ϕi

∂n
dS,

and substituting this gives the result. //
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Dramatis Personae: Who did what when

We give the relevant chapter, plus a page reference (”(m.n)” means ”Week
m, page n”).
Jean D’Alembert (1717-1783) in 1746: Wave equation III (3.1)
J.-R. Argand (1768-1822) in 1806: Argand representation for the complex
plane II (2.4)
Louis de Broglie (1892-1987) in 1924: wave-particle duality III (5.1)
Georg Cantor (1845-1916) in 1872: construction of the reals via completion
II (2.4)
Arthur Cayley (1821-1894) in 1858: matrices, IV; Cayley-Hamilton Th., IV
(6.2)
A. Clairault (1713-1765) in 1731: Clairault’s Th. [interchanging order of
partials] III (3.1)
C. A. Coulomb (1736-1806) in 1785: inverse square law for electrostatics III
(4.6)
G. Cramer (1704-1752) in 1750: Cramer’s Rule IV (6.6)
Richard Dedekind (1831-1916) in 1872: construction of the reals via cuts
[sections] II (2.4)
Albert Einstein (1879-1955) in 1905: photoelectric effect [”the photon”] III
(5.2); in 1916, General Relativity and Einstein summation convention IV
(5.5)
Leonhard Euler (1707-1783): ODEs, I (1.2); Euler’s formula II (3.1)
Joseph Fourier (1768-1830) in 1807: heat equation III (4.1); Fourier series
and integrals, V
A.-J. Fresnel (1788-1827) in 1821: wave theory of light III (5.2)
C. F. Gauss (1777-1855) in 1831: determinants (1801) IV (6.4); Gaussian
elimination, in 1805 IV (6.7); Gauss’ Law and Divergence Th. (Gauss’ Th.)
VI (10.3); the complex plane in 1831, II (2.5)
George Green (1793-1841) in 1928, Essay ...: Green functions, I (2.1), V
(9.2), Green’s Theorem VI (10.6)
W. R. (Sir William) Hamilton (1805-1865) in 1837: complex numbers as or-
dered pairs II (2.5); in 1853, Cayley-Hamilton Th., IV (6.2)
Werner Heisenberg (1901-1970) in 1925: Matrix Mechanics; Quantum Me-
chanics III (4.6), IV (6.3)
Christiaan Huygens (1629-1695) in 1678: wave theory of light III (5.2)
L. Kronecker (1823-1891), posth. book, 1903: Kronecker delta
P. S. de Laplace (1749-1827) in 1799: Laplace’s equation III (4.3), VI (10.4);
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Laplacian, IV (9.5)
G. Leibniz (1646-1723): calculus, I (1.2); determinants, IV (6.3)
James Clerk Maxwell (1831-1879): Maxwell’s equations; electromagnetic the-
ory of light VI (10.4)
John von Neumann (1903-1957) in 1923: the integers via set theory II (2.4)
Sir Isaac Newton (1645-1723) in 1687, Principia: Calculus I (1.1), Laws of
Motion I (2.3), Law of Gravity III (4.6); Opticks, in 1704: corpuscular theory
of light III (5.2)
Max Planck (1858-1947) in 1900: Planck’s constant; quantum theory of ra-
diation III (5.1)
S. D. Poisson (1781-1840) in 1813: Poisson’s equation III (4.3), VI (10.4)
Erwin Schrödinger (1887-1961) in 1926: Schrödinger Equation; Wave Me-
chanics; Quantum Mechanics III (5.1)
Sir George Stokes (1819-1903) in 1854: Curl Th. [Stokes’ Th.] VI (10.5)
J. J. Sylvester ((1814-1897) in 1850: matrices IV
C. Wessel (1745-1815) in 1799: the complex plane [”Argand representation”]
II (2.4)
Thomas Young (1773-1829) in 1803: wave theory of light III (5.2)
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