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GREEN FUNCTIONS
These go back to George GREEN (1793-1841) in 1828, in his Essay:

G. GREEN, Essay on the application of mathematical analysis to the theo-
ries of electricity and magnetism.

Lu := p0u
′′ + p1u

′ + p2u = 0, 0 ≤ x ≤ ℓ. (H)

BCs u(0) = 0, u(ℓ) = 0.
For ξ ∈ (0, ℓ), seek a (Green) function G(x, ξ) such that:

G(x, ξ) is continuous in x and ξ;
G′(., ξ) has a jump discontinuity of −1/p0(ξ) at ξ, i.e.

G′(ξ+, ξ)−G′(ξ−, ξ) = −1/p0(ξ);

G(., ξ) satisfied (H) except at x = ξ.
Let u1, u2 be linearly independent solutions of (H). Seek a solution of

the form

G(x, ξ) = a1u1(x)+a2u2(x) (0 ≤ x ≤ ξ), b1u1(x)+b2u2(x) (ξ ≤ x ≤ ℓ).

As G is continuous at ξ:

a1u1(ξ) + a2u2(ξ)− b1u1(ξ)− b2u2(ξ) = 0.

As G′ jumps at ξ:

a1u
′
1(ξ) + a2u

′
2(ξ)− b1u

′
1(ξ)− b2u

′
2(ξ) = 0.

Write ci := bi − ai:
c1u1(ξ)− c2u2(ξ) = 0,

c1u
′
1(ξ)− c2u

′
2(ξ) = −1/p0(ξ).

As u1, u2 are independent solutions, the determinant is non-zero, so we can
solve for c1, c2.
As u(0) = 0:

a1u1(0) + a2u2(0) = 0. (1)

As u(ℓ) = 0:
b1u1(0) + b2u2(0) = 0.
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As bi = ai + ci,

a1u1(ℓ) + a2u2(ℓ) = −c1u1(ℓ)− c2u2(ℓ). (2)

For determinant non-zero, we can solve (1), (2) for ai, then find bi.

Self-adjoint case. In the special case

Lu = pu′′ + p′u′ + qu = 0,

or
Lu = (pu′)′ + qu = 0,

L is called self-adjoint. One can reduce to the self-adjoint case by using an
integrating factor. For,

p0u
′′ + p1u

′ + p2u = 0

is of the form
pu′′ + p′u′ + qu = 0

iff

p0
p

=
p1
p′

=
p2
q
;

p′

p
=

p1
p0
; log p =

∫
p1/p0, p = exp{

∫
p1/p0}.

Symmetry. We quote: the Green function is symmetric, i.e.

G(x, ξ) = G(ξ, x),

iff the linear DO L is self-adjoint.
We now restrict to the self-adjoint/symmetric case.

Integral representation. The DE

Ly = g (x0 ≤ x ≤ x1)

with L a linear differential operator might be expected to have a solution

y = L−1g,

with L a (linear) integral operator. This is in fact so, and the Green function
G is the kernel of this operator, in the sense that

y(x) =
∫
G(x, y)g(y)dy.
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Interpretation.
Think of L as giving the response of a (physical) system to an applied

force g. Think of G(x, ξ) as giving the response at x to force 1 applied at
ξ. Then by linearity G(x, ξ)g(ξ) gives the response to force g(ξ) at ξ, and
summing/integrating,

∫
G(x, y)g(y)dy gives the total response at x.

The symmetry of the Green function is to be expected on physical grounds.
Think of Newton’s Laws of Motion (Sir Isaac NEWTON (1645-1723); Prin-
cipia, 1687): to every action there is an equal and opposite reaction.

G is also called the response function, or propagator (it shows how force
propagates from x to y), or kernel.
Example. We return to the DE we met earlier:

u′′ + λ2u = f(x) (0 ≤ x ≤ ℓ),

BCs u(0) = 0, u(ℓ) = 0. Check that the Green function is given by

G(x, y) =
sinλy sinλ(ℓ− x)

λ sinλℓ
(0 ≤ y ≤ x),

G(x, y) =
sinλx sinλ(ℓ− y)

λ sinλℓ
(x ≤ y ≤ ℓ).
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II. COMPLEX NUMBERS.

RecallN := {1, 2, 3, ...}, the set of natural numbers. Also,N0 := {0, 1, 2, ...} =
N ∪ {0}.
We can take these for granted, or proceed as follows:

0 ←→ ∅
1 ←→ {∅}
2 ←→ {0, 1}
3 ←→ {0, 1, 2}

etc. (John von NEUMANN (1903-57) in 1923).
Addition comes with N. Its inverse, subtraction, gives

Z := {...,−3,−2,−1, 0, 1, 2, 3, ...} (integers – Z for Zahl),

an additive group. We can multiply integers, and divide non-zero integers,
leading to the rationals:

Q := {m/n : m,n ∈ Z, n ̸= 0} (Q for quotient).

The ancient Greeks had Z and Q.
We meet the reals R as:
(i) lengths of line segments (as in Greek geometry);
(ii) infinite decimal expansions.
Constructing R from Q is hard, and was not done till 1872, in two ways:
(i) Dedekind cuts (or sections): Richard DEDEKIND (1831-1916);
(ii) Cauchy sequences: Georg CANTOR (1845-1918).
Dedekind cuts are specific to R, as they depend on the total ordering of the
line (“x < y, x > y or x = y”). Cauchy sequences are general, and can be
done in any metric space (roughly: space in which a distance function satis-
fying the Triangle Inequality – below – is defined).

Argand diagram
Complex numbers z = x+ iy correspond to points (x, y) in the cartesian

plane R2 or R×R, via the Argand diagram:

z = x+ iy ←→ (x, y) :

Jean-Robert ARGAND (1768-1822) in 1806;
Caspar WESSEL (1745-1818) in 1799 (Danish – translation 1895);
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C.F. GAUSS (1777-1855) in 1831.
We call x the real part of z and y the imaginary part

x = Re z; y = Im z.

Addition:

(z1, z2) −→ z1 + z2 : (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2).

Subtraction:

(z1, z2) −→ z1 − z2 : (x1 + iy1)− (x2 + iy2) = (x1 − x2) + i(y1 − y2).

Multiplication:

(z1, z2) −→ z1z2 : (x1 + iy1)× (x2 + iy2) = (x1x2− y1y2)+ i(x1y2 + x2y1)

(W.R. HAMILTON (1805-1865) in 1837).

Conjugates and Division
Conjugates. z = x− iy is called the (complex) conjugate of z.
Note:
1. z = z;
2. z1 + z2 = z1 + z2;
3. z1z2 = z2z1 = z2.z1.
Then
4. zz = (x+ iy)(x− iy) = x2 + y2 := |z|2, > 0 unless x = y = 0, ⇐⇒ z = 0.

Note also that

x =
1

2
(z + z), y =

1

2i
(z − z).

Division.

z1
z2

=
z1z2
z2z2

=
1

|z2|2
z1z2 =

1

x2
2 + y22

(x1 + iy1)(x2 − iy2)

=
x1x2

x2
2 + y22

+ i
(x2y1 − x1y2)

x2
2 + y22

(z ̸= 0).

Cartesians v. Polars.
For addition and subtraction, cartesians are convenient: Re and Im add

and subtract nicely. For multiplication and division, polars are convenient:

z1z2 = (r1e
iθ1)(r2e

iθ2) = (r1r2)e
i(θ1+θ2),
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z1
z2

=
rie

iθ1

rieiθ2
=

r1
r2
ei(θ1−θ2).

What is i?
We first meet i as a formal square root of −1: i =

√
−1.

Then all expressions i× i = i2 are replaced by −1: i2 = −1.
Rotation.

In the Argand diagram, i is (0, 1) = 0 × 1 + 1 × i in Cartesians, 1 × ei
π
2

in polars. As cos (π/2) = 0, sin (π/2) = 1,

iz =
(
1eiπ/2

) (
reiθ

)
= rei(θ+π/2).

So multiplying by i rotates the radius vector through a right-angle anticlock-
wise: “i is the order Left Turn” (not a number so much as an operation).
2× 2 matrices (for matrices, see Ch. III below):

I =

(
1 0
0 1

)
: I2 = I.

J =

(
0 1
−1 0

)
: J2 =

(
0 1
−1 0

)(
0 1
−1 0

)
=

(
−1 0
0 −1

)
= −I.

We can if we wish regard the Argand representation as

(x, y)←→ xI + yJ,

and work with 2× 2 real matrices.
Note. The reals R form a field in the language of Algebra. This is not al-
gebraically closed: a real polynomial need not have real roots: (e.g. x2 + 1).
By adjoining to the field R the element i (or i and −i), we obtain a bigger
field, C, in which x2+1 does have roots. This passage from R to C is called
field extension, and leads to Galois theory (Evariste GALOIS (1811-1832), in
1832). We need go no further: now all complex polynomials of degree n have
n complex roots (counted according to multiplicity): this is the Fundamental
Theorem of Algebra. Despite the name, this is a result not of Algebra but
of Analysis: its proof needs limiting operations. We can think of Analy-
sis as the subject concerning limit operations (convergence, differentiation,
integration etc.). But basically we are doing Analysis when we are making
essential use of the properties of the real or complex number systems, R or C
(G. H. Hardy (1877-1947) used to say that an analyst was a mathematician
habitually seen in the company of the real or complex number systems).
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