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Theorem (Triangle Inequality).

|z1 + z2| ≤ |z1|+ |z2|.

Proof.

|z1 + z2|2 = (z1 + z2)(z1 + z2)
= (z1 + z2)(z1 + z2)
= z1z1 + z1z2 + z2z1 + z2z2
= |z1|2 + |z2|2 + 2Re(z1z2) (z2z1 = z1z2; 2Re(z) = z + z)
≤ |z1|2 + |z2|2 + 2|z1||z2| (Re(z) = x ≤

√
x2 + y2 = |z|; |z1z2| = |z1||z2|)

= (|z1|+ |z2|)2. //

Cor. Equality holds, |z1 + z2| = |z1|+ |z2|, iff z1, z2 have the same argument
– i.e. lie on the same ray arg(z) = θ.

Proof. Equality holds iff Re(z1z2) = |z1z2|. But z1z2 = r1e
iθ1 × r2e

−iθ2 =
r1r2e

i(θ1−θ2) = r1r2 = |z1z2| iff θ1 = θ2. //

Note [Geometrical Interpretation].
Sum of lengths of two sides of a triangle ≥ lengths of 3rd side. Equality iff
triangle degenerates to a line.

Note [Physical Interpretation].
Vector addition. Triangle of Forces.

Euler’s Formula (L. Euler (1707-1783)).

ez = 1 + z +
z2

2!
+ ...+

zn

n!
...,

cos z = 1− z2

2!
+
z4

4!
− ...,

sin z = z − z3

3!
+
z5

5!
− ...
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Take z = iθ, θ real:

eiθ = 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!

= (1− z2

2!
+
z4

4!
− ...) + i(z − z3

3!
+
z5

5!
− ...)

= cos θ + i sin θ.

This is implicit in the Argand representation.
Note. Take θ = π; then

eiπ = −1,

or
eiπ + 1 = 0.

Some find this link between ‘the five most fundamental of numbers’ intrigu-
ing.
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III. PARTIAL DIFFERENTIAL EQUATIONS

A partial differential equatiion, or PDE, is a DE with more than one
independent variable. We will label the independent variables

x, y or x, t if two (x, y for space, t for time),
x, y, z (or t) if three,
x1, . . . , xn (and/or t) if more.

Differential notation. For f = f(x, y) or f(x1, . . . , xn), write

∂f

∂x
, or fx, or f1

for the (partial) derivative of f w.r.t. the first argument, with the others
held fixed – ∂ rather than d to emphasize this. As before, Dx, or D1, will
stand for the differential operator here.
Higher derivatives. For f(x, y), there are:

two first-order partials, f1, f2;
three second-order partials,

f11 =
∂2f

∂x2
, f12 =

∂2f

∂x∂y
, f21 =

∂2f

∂y∂x
, f22 =

∂2f

∂y2
.

We quote Clairault’s Theorem (Alexis CLAIRAULT (1713-1765), in 1731):
if f12 and f21 both exist and are continuous, they are equal. We shall restrict
attention to this case, so we will freely interchange the order of partial differ-
entiation in what follows. Thus f12 = f21, giving three second-order partials,
rather than four.

The third-order partials are thus f111, f112 = f121 = f211, f122 = f212 =
f221, f222, etc.

1. THE WAVE EQUATION (Jean D’ALEMBERT (1717-1783) in 1746).
Consider a string under tension T , subject to small displacements. Let s

denote distance along the string, (x, y) a point on the string, and neighbour-
ing points P , Q. Let ψ, ψ + dψ be the angles between the tangents to the
string at P , Q and the x-axis (initial position of the string).

P = (x, y) ↔ s, ψ, Q = (x+ dx, y + dy) ↔ s+ ds, ψ + dψ.
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If the mass density of the string is ρ = ρ(s), the mass between s, s + ds
is ρds. Resolve forces parallel to the y-axis:

Upward y-component of force at Q is T sin(ψ + dψ);
Upward y-component of force at P is T sinψ.
Net upward y-component of force on the element PQ is T [sin(ψ + dψ)−

sinψ] = T cosψdψ (this uses Newton’s Second Law of Motion for the action
and reaction of the tension in the string on each side of P ).

By Newton’s Third Law of Motion, force = mass × acceleration,

T cosψdψ = ρds.∂2y/∂t2, (i)

to first order.
tanψ = ∂y/∂x

(diagram). Differentiate:

sec2ψdψ = ∂2y/∂x2dx, dψ = cos2ψ∂2y/∂x2dx.

Substitute for dψ in (i):

T cos3ψ∂2y/∂x2dx = ρds.∂2y/∂t2.

But ∂x/∂s = cosψ (diagram); so dx = cosψds. Substitute for dx and divide
by ds:

T cos4ψ∂2y/∂x2 = ρ∂2y/∂t2.

But for small displacements, ψ is small, so cosψ = 1− 1
2
ψ2+ . . . ∼ 1, to first

order. So
T∂2y/∂x2 = ρ∂2y/∂t2.

Write
c2 := T/ρ.

Then

∂2y/∂x2dx =
1

c2
ρ∂2y/∂t2,

the one-dimensional wave equation. Here c has the dimensions of velocity
(L/T ), and we shall see that it has the interpretation of the velocity of a
wave.

If f is an arbitrary (smooth enough – twice continuously differentiable)
function, consider f(x+ ct).

∂f(x+ ct)

∂x)
= f ′(x+ ct),

∂2f(x+ ct)

∂x2
= f ′′(x+ ct),
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∂f(x+ ct)

∂t)
= cf ′(x+ ct),

∂2f(x+ ct)

∂t2
= c2f ′′(x+ ct),

so f(x+ ct) is a solution of the wave equation.
Similarly, if g is another arbitrary function, g(x− ct) is also a solution.
By linearity, f(x+ ct) + g(x− ct) is also a solution to the wave equation.

Interpretation.
Think of f as the profile of a wave. Then f(x + ct) represents the wave

travelling right with velocity c. Similarly, g(x − ct) represents a wave with
profile g travelling to the left with velocity c.
General solution.

The general solution (GS) of a 2nd order ODE contains two arbitrary
constants. The general solution to a 2nd order PDE contains two arbitrary
functions. Since f(x+ ct)+g(x− ct) is a solution and contains two arbitrary
functions, it is the GS:

THEOREM (D’Alembert, 1746). The general solution to the wave equation

∂2y

∂x2
=

1

c2
∂2y

∂t2

is
y = f(x+ ct) + g(x− ct).

Higher dimensions. In two or three dimensions, the wave equation is

∂2y

∂x2
+
∂2y

∂y2
=

1

c2
∂2y

∂t2
,

∂2y

∂x2
+
∂2y

∂y2
+
∂2y

∂z2
=

1

c2
∂2y

∂t2
.

Plane waves. If (ℓ,m, n) are the direction cosines of a direction (given by the
vector ℓi+mj+nk) – here ℓ2 +m2 +n2 = 1), f(ℓm+my+nz) is a solution
to the wave equation – plane wave profile f travelling with velocity c in the
direction (ℓ,m, n).

Solution by Separation of Variables. Seek a solution of the form

u = u(x, t) = X(x)T (t).

uxx = X ′′(x)T (t), utt = X(x)T ′′(t). So the wave equation uxx = c−2utt is
X ′′T = c−2XT ′′, or

X ′′(x)/X(x) = c−2T ′′(t)/T (t). (∗)
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Now LHS is a function of x only, RHS a function of t only – but they coincide.
So both must be constant, k2 say:

X ′′(x)/X(x) = k2, T ′′(t)/T (t) = k2c2.

Solutions are X(x) = ekx, X(x) = e−kx, T (t) = ekct, T (t) = e−kct, giving
u = e±kx±kct. But exponentially growing solutions are unphysical, and expo-
nentially decaying ones are rapidly damped out.

By linearity, any linear combination [sum of scalar multiples] of solutions
is also a solution.

As in (∗) the variables x, t are separated – are on opposite sides of the
equation – this method is called separation of variables.

More useful solutions are X = cos kx, X = sin kx, T = cos kct, T =
sin kct.
Boundary conditions (BCs).

Suppose the string has length ℓ, and is fixed at the ends x = 0 and x = ℓ.
We seek solutios which satisfy the boundary conditions

X(0) = 0, X(ℓ) = 0. (BC)

X = sin kx satisfies the BC X(0) = 0. It satisfies the other BC sin kℓ = 0 iff
kℓ = nπ, integer, k = nπ/ℓ. So: solutions are

X(x) = sinnπx/ℓ, T (t) = an cosnπct/ℓ+ bn sinnπct/ℓ, n integer.

By superposition,

u = u(x, t) =
∑
n

sinnπx/ℓ [an cosnπct/ℓ+ bn sinnπct/ℓ]

is also a solution. The RHS is an example of a Fourier series (Ch. V).
Taking t = 0, an can be chosen to satisfy

u(x, 0) =
∑
n

an sinnπx/ℓ = f(x), say, (0 ≤ x ≤ ℓ),

and similarly bn can be chosen to satisfy

∂u(x, t)

∂t
|t=0 = ut(x, 0) =

∑
n

bn.
nπc

ℓ
sinnπx/ℓ = g(x) say, (0 ≤ x ≤ ℓ).
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