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Theorem (Triangle Inequality).
|21+ 22| < [z1] + |22].

Proof.

(21 + 22) (21 + 22)

(21 + 22)(z1 + 22)

2121 + 2122 + 2221 + 2222

|21)% + |22|* + 2Re(2120) (2021 = 2122; 2Re(2) = 2 + Z)

|21+ 22 +22[22]  (Re(2) = 2 < Va? +y? = |2[; |z122] = |21][22])
(Iza] + |22])?. //

Cor. Equality holds, |z1 + 22| = |21] + |22}, iff 21, 22 have the same argument
—i.e. lie on the same ray arg(z) = 0.

|21 +2’2|2

Al

Proof. Equality holds iff Re(217;) = |z122|. But 217 = 7€ x rye 2 =

7“17“261'(91792) =Trire = |2’122| iff 6; = 6,. //

Note [Geometrical Interpretation].
Sum of lengths of two sides of a triangle > lengths of 3rd side. Equality iff
triangle degenerates to a line.

Note [Physical Interpretation].
Vector addition. Triangle of Forces.

Euler’s Formula (L. Euler (1707-1783)).
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Take z = 10, 6 real:
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= cosf+sinf.

This is implicit in the Argand representation.
Note. Take 6 = m; then

e = —1,

or
e"+1=0.

Some find this link between ‘the five most fundamental of numbers’ intrigu-
ing.



II1. PARTIAL DIFFERENTIAL EQUATIONS

A partial differential equatiton, or PDE, is a DE with more than one
independent variable. We will label the independent variables

x,y or x, t if two (x, y for space, t for time),

x,y, z (or t) if three,

x1,...,T, (and/or t) if more.
Differential notation. For f = f(z,y) or f(x1,...,x,), write
0
—f, or fy, or fi
ox

for the (partial) derivative of f w.r.t. the first argument, with the others
held fixed — 9 rather than d to emphasize this. As before, D,, or Dy, will
stand for the differential operator here.
Higher derivatives. For f(z,y), there are:

two first-order partials, fi, fo;

three second-order partials,

O f
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We quote Clairault’s Theorem (Alexis CLAIRAULT (1713-1765), in 1731):
if f1o and fo; both exist and are continuous, they are equal. We shall restrict
attention to this case, so we will freely interchange the order of partial differ-
entiation in what follows. Thus fi5 = fo1, giving three second-order partials,
rather than four.

The third-order partials are thus f111, f112 = f121 = f211, f122 = f212 =

fa21, faoo, etc.

1. THE WAVE EQUATION (Jean D’ALEMBERT (1717-1783) in 1746).
Consider a string under tension 7', subject to small displacements. Let s
denote distance along the string, (z,y) a point on the string, and neighbour-
ing points P, Q). Let v, ¥ 4+ di be the angles between the tangents to the
string at P, Q and the z-axis (initial position of the string).
P=(z,y) < 3,0, Q= (r+dr,y+dy) < s+ds, v+ di.



If the mass density of the string is p = p(s), the mass between s, s + ds
is pds. Resolve forces parallel to the y-axis:

Upward y-component of force at @ is T sin(¢) + di));

Upward y-component of force at P is T sin .

Net upward y-component of force on the element PQ is T'[sin(¢) + dip) —
sinty| = T costpdyp (this uses Newton’s Second Law of Motion for the action
and reaction of the tension in the string on each side of P).

By Newton’s Third Law of Motion, force = mass X acceleration,

T cospdy) = pds.0*y/Ot?, (1)

to first order.
tan) = dy/0x
(diagram). Differentiate:
sec’ydy = 0%y /0x dx, dip = cos*0*y/Ox du.
Substitute for di in (i):
Tcos*0?y/0x*dx = pds.0%y/Ot>.
But 0x/0s = cosv (diagram); so dx = cos1pds. Substitute for dr and divide
by ds:
Tcos™pd*y/0x? = pd?y/Ot>.

But for small displacements, v is small, so cosy) =1 — %wQ +...~1, to first

order. So
TO%*y/0x* = pd*y /Ot
Write
& :=1T/p.
Then ]
0*y/0x*dr = gp82y/8t2,
the one-dimensional wave equation. Here ¢ has the dimensions of wvelocity
(L/T), and we shall see that it has the interpretation of the velocity of a
wave.

If f is an arbitrary (smooth enough — twice continuously differentiable)
function, consider f(x + ct).

Of (z + ct)
or)

O f(z + ct)

= f'(x + ct), 52

= f"(z + ct),



Of (z + ct) O*f(x + ct)
ot) ot?
so f(z + ct) is a solution of the wave equation.

Similarly, if g is another arbitrary function, g(z — ct) is also a solution.

By linearity, f(x+ ct) + g(x — ct) is also a solution to the wave equation.
Interpretation.

Think of f as the profile of a wave. Then f(x + ct) represents the wave
travelling right with velocity c¢. Similarly, g(z — ct) represents a wave with
profile g travelling to the left with velocity c.

General solution.

The general solution (GS) of a 2nd order ODE contains two arbitrary
constants. The general solution to a 2nd order PDE contains two arbitrary
functions. Since f(x+ ct)+ g(x —ct) is a solution and contains two arbitrary
functions, it is the GS:

=cf'(z + ct), =2 f"(z + ct),

THEOREM (D’Alembert, 1746). The general solution to the wave equation
Py _ 10
0x2 2 Ot2
is
y= f(x+ct) + g(x — ct).

Higher dimensions. In two or three dimensions, the wave equation is

Py Py 1Py Oy Py Py 10y

ox2 Oy ot 02 Oy? 022 2ot
Plane waves. If (¢, m,n) are the direction cosines of a direction (given by the
vector i+ mj+nk) — here (2 +m? +n? = 1), f(¢m+ my+nz) is a solution
to the wave equation — plane wave profile f travelling with velocity ¢ in the
direction (¢, m,n).

Solution by Separation of Variables. Seek a solution of the form
u=u(z,t) = X(x)T(t).

Upry = X"(2)T(t), uyy = X(2)T"(t). So the wave equation u,, = ¢ 2uy is
X"T = c2XT", or

X"(2)/X (x) = c*T"(t)/T(1). (%)
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Now LHS is a function of z only, RHS a function of ¢ only — but they coincide.
So both must be constant, k? say:

X"(z)/X(x) = k2, T"(t)/T(t) = k*c.

Solutions are X (z) = ek X(x) = e, T(t) = ek, T(t) = e*, giving
u = eTFrEket Byt exponentially growing solutions are unphysical, and expo-
nentially decaying ones are rapidly damped out.

By linearity, any linear combination [sum of scalar multiples] of solutions
is also a solution.

As in (*) the variables x, ¢ are separated — are on opposite sides of the
equation — this method is called separation of variables.

More useful solutions are X = coskx, X = sinkz, T = coskct, T =
sin kct.
Boundary conditions (BCs).

Suppose the string has length ¢, and is fixed at the ends x = 0 and x = /.
We seek solutios which satisty the boundary conditions

X(0)=0, X()=0. (BO)

X = sin kz satisfies the BC X (0) = 0. It satisfies the other BC sin k¢ = 0 iff
k¢ = nr, integer, k = nw /(. So: solutions are

X(x) =sinnmz/L, T(t) = a, cosnmct/l + b, sinnmet /1, n integer.
By superposition,

u=u(z,t) =Y sinnrz/l [a,cosnmct/l + b, sinnmwct /(]

n

is also a solution. The RHS is an example of a Fourier series (Ch. V).
Taking t = 0, a,, can be chosen to satisfy

u(z,0) =Y aysinnrz/l = f(z), say, (0<z<Y),

and similarly b, can be chosen to satisfy

Ou(x,t) o =
ot 0T

u(z,0) = an% sinnrx/l = g(x) say, (0<x</Y).



