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2. THE HEAT EQUATION (Joseph FOURIER (1768-1830) in 1807;
Théorie analytique de la chaleur, 1822).

One dimension.
Consider a uniform bar (of some material, say metal, that conducts heat),

of cross-sectional area S, with sides insulated so that heat flows only parallel
to the x-axis. The rate of flow of heat across a surface is −K∂u/∂x, where:

K is a constant, the thermal diffusivity of the material,
u = u(x, t) is the temperature,
n is the outward normal to the surface (minus as heat flows form hotter

to colder).
Consider the slab a ≤ x ≤ b. At the right-hand end x = b, the outward
normal is in the direction of increasing x, so ∂u/∂n = +∂u/∂x, while at the
left-hand end x = a, ∂u/∂n = −∂u/∂x. So the rate of heat flow into the s
lab – minus the rate of heat flow out – is

dQ/dt = K[
∂

∂x
u(b, t)− ∂

∂x
u(a, t)]S.

This can be written as

K
∫ b

a

∂2

∂x2
u(x, t)dx.S.

But the heat content is

Q =
∫ b

a
cρu(x, t)dx.S,

where c is the specific heat, ρ is the density. So

dQ/dt =
∫ b

a
cρ

∂

∂t
u(x, t)dx.S

(assuming that we can take the t-differentiation inside the x-integration –
”differentiating under the integral sign”; this is justified under sufficient
smoothness conditions, which we assume here). Equating,

(dQ/dt =) K
∫ b

a

∂2

∂x2
u(x, t)dx.S =

∫ b

a
cρ

∂

∂t
u(x, t)dx.S.
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Cancel S. This holds for all a, b. So the integrands must be equal:

K
∂2

∂x2
u(x, t) = cρ

∂

∂t
u(x, t).

Write k := K/cρ for the thermal diffusivity. Then

∂2

∂x2
u(x, t) = cρ

∂

∂t
u(x, t)/k,

the heat equation.
Subscript notation:

uxx = ut/k.

Higher dimensions:

uxx + uyy = ut/k (2D); uxx + uyy + uzz = ut/k (3D).

Separation of variables.
For u(x, t) = X(x)T (t), uxx = ut/k: X

′′T = XṪ/k,

X ′′/X = Ṫ /Tk = const = −C2,

say:
Ṫ /T = −kC2, T = const.e−kC2t

(so temperature decreases with time – exponential increase with time is un-
physical, hence the minus sign in −C2).

As for the wave equation, X ′′/X = −C2 gives X = cosCx, sinCx. Sup-
pose we impose the BCs

u(0, t) = 0, u(ℓ, t) = 0

(bar of length ℓ, with temperature fixed at both ends at 0o C); similarly for
other fixed temperatures (which we can choose as 0 by altering the origin of
temperature), and IC

u(x, 0) = f(x),

the initial temperature distribution (given by the initial heat distribution).
Then X = A cosCx + B sinCx and X(0) = 0 gives A = 0. Then X =
B sinCX and X(ℓ) = 0 gives Cℓ = nπ, C = nπ/ℓ. So

Bn sinnπ/ℓ e
−kn2π2t/ℓ
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is a solution. By linearity (= superposition),

u =
∞∑
n=0

Bn sinnπ/ℓ e
−kn2π2t/ℓ

is a solution. ICs: ∞∑
n=0

Bn sinnπ/ℓ = f(x).

This is a Fourier series for f , from which we can determine the constants Bn

– see Ch. V.
Steady state.

As t → ∞, the time-dependence dies away. The heat equation then
simplifies to uxx = 0, giving

u(x) = A+Bx.

If the BCs are (ℓ = 1 say) u(0) = u0, u(1) = u1, this gives A = u0,
B = u1 − u0. So u = uPI = u0 + (u1 − u0)x is a particular integral (PI). But
it does not satisfy the IC u(x, 0) = f(x).

To solve the full heat equation uxx = ut/k, with BCs u(0, t) = u0,
u(1, t) = u1 and IC u(x, 0) = f(x), take the complementary function

u = uCF =
∞∑
n=0

Bn sinnπ/ℓ e
−kn2π2t/ℓ

and add it to uPI :

u = uPI + uCF = u0 + (u1 − u0)x+
∞∑
n=0

Bn sinnπ/ℓ e
−kn2π2t/ℓ,

with Bn the Fourier coefficients of f (Ch. V).

3. LAPLACE’S EQUATION (P. S. LAPLACE (1749-1827), Mécanique
céleste (1799-1825, Vols 1-5); S. D. POISSON (1781-1840) in 1813).

The steady-state solution of the heat equation satisfies

uxx = 0, uxx + uyy = 0, uxx + uyy + uzz = 0

in one, two and three dimensions.
For reasons which will emerge later (Ch. VI), this equation arises in other
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physical contexts. It is called Laplace’s equation. It arises in:
Electromagnetism (EM) and gravitation (celestial mechanics, astrophysics).
The potential (potential function) satisfies Laplace’s equation if there are no
sources of mass or charge present, Poisson’s equation

uxx + uyy + uzz = 4πρ

if mass or charge density ρ is present.
Separation of variables. In two dimensions, uxx = −uyy. Take u(x, y) =
X(x)Y (y):

X ′′Y = −XY ′′, X ′′/X = −Y ′′/Y = −k2,

say, the separation constant (w.l.o.g., k > 0).

X(x) = e±kx, Y (y) = sin ky, cos ky, = e±kx cos / sin ky.

As before, we can superpose solutions, and use BCs or ICs to determine con-
stants.

Again as before, for unbounded regions, exponentially growing potentials
are unphysical: the potential generated by a charge or mass decreases to zero
at infinity.
Laplacian.

∇2, or ∆, :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= Dxx +Dyy +Dzz or D11 +D22 +D33

is called the Laplacian operator, del (∆) or nabla squared (∇2); the Laplacian
of u is

∇2u, or ∆u, :=
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= uxx + uyy + uzz or u11 + u22 + u33.

Other coordinate systems.
As well as Cartesian coordinates (x, y, z), other possible coordinate sys-

tems include:
Plane polars (r, θ); cylindrical polars (r, θ, z) – plane polars + z in the third
dimension;
Spherical polars: (r, θ, ϕ): r = distance from the origin;

θ = longitude; ϕ = colatitude
(think of θ, ϕ as angle variables on the earth’s surface and r as the radius of
the earth). Select the coordinate system to reflect any SYMMETRY present
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in the problem.
Classification.

Recall that the general algebraic equation of the second degree in two
variables is

ax2 + bxy + cy2 + dx+ ey + f = 0.

By completing the square and changing variables, one can reduce to one of

ax2 + by2 = c (two second-order terms),

ax2 = by (one second-order term).

In the first, we can take a > 0 w.l.o.g.; then the sign of the other second=-
order term b is crucial. There are three standard forms:

x2/a2 + y2/b2 = 1 (ellipse – both coefficients > 0);

x2/a2 − y2/b2 = 1 (hyperbola – one coefficient > 0, one < 0);

y2 = 4x (parabola – only one second-order terms).

These curves are (including limiting cases – line-pair, line, point) the conic
sections or conics – intersections of a (doubly infinite) cone with a plane.

By analogy, we classify linear 2nd-order PDEs similarly:

a2uxx + b2uyy + 1st-order linear differential operator = 0

– elliptic, prototype Laplace’s equation;

a2uxx − b2uyy + 1st-order linear differential operator = 0

– hyperbolic, prototype the wave equation;

a2uxx + 1st-order differential operator = 0

– parabolic, prototype the heat equation.
Laplace’s equation in (cylindrical) polars.

We quote:

∆u = urr +
1

r
ur +

1

r2
uθθ .(+uzz) = 0.

So with symmetry (axial symmetry if z is present):

urr +
1

r
ur = 0.
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Write v := ur: vr = dv/dr − v/r; dv/v = −dr/r; log v = − log r + const;
vr = c; du/dr = c/r; du = cdr/r; u = c log r + d.
Laplace’s equation in spherical polars.

We quote:

∆u =
1

r2
∂

∂r
(r2

∂u

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2sin2θ

∂2u

∂θ2
.

Spherical symmetry: ∂/∂θ = 0, ∂/∂ϕ = 0. So ∆u = 0 is

1

r2
∂

∂r
(r2

∂u

∂r
) = 0;

∂

∂r
(r2

∂u

∂r
) = 0; r2

∂u

∂r
= c;

∂u/∂r = c/r2; u = −c/r + a.

If u → 0 as r → ∞ (as is needed for the potential to be physical), a = 0:

u = u(r) = −c/r.

The force (electromagnetic or gravitational) is the derivative of the potential
(more generally, the gradient of the potential, in the language of Vector
Calculus – see Ch. VI), i.e.

Force = c/r2.

This expresses two fundamental laws:
1. Newton’s Law of Gravity (Sir Isaac NEWTON (1643-1727); Principia,
1687):

The force due to gravity between two masses m1, m2 a distance r apart
is

F = Cm1m2/r
2,

where C is the gravitational constant (an absolute constant).
2. Coulomb’s Inverse Square Law (C. A. COULOMB (1736-1806), in 1785).
Similarly for the electrostatic force.
Note. That two of the four fundamental forces of Nature – electromagnetism,
weak nuclear force (governing radioactivity), strong nuclear force (holding the
nucleus together – or protons would repel each other by electrostatic repul-
sion!) and gravity – are governed by the same Inverse Square Law is quite
remarkable. As you may know, the first three forces have been unified, but
not the first three with gravity.
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