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2. THE HEAT EQUATION (Joseph FOURIER (1768-1830) in 1807;
Théorie analytique de la chaleur, 1822).

One dimension.

Consider a uniform bar (of some material, say metal, that conducts heat),
of cross-sectional area S, with sides insulated so that heat flows only parallel
to the z-axis. The rate of flow of heat across a surface is —K0u/0z, where:

K is a constant, the thermal diffusivity of the material,

u = u(x,t) is the temperature,

n is the outward normal to the surface (minus as heat flows form hotter
to colder).

Consider the slab a < x < b. At the right-hand end = = b, the outward
normal is in the direction of increasing x, so du/0n = +du/0x, while at the
left-hand end = = a, du/dn = —0u/Ox. So the rate of heat flow into the s
lab — minus the rate of heat flow out — is

0

dQ/dt = K[%u(b, t) — iu(a, t)]S.

This can be written as

b H?
K/a @u(x,t)dx.s.

But the heat content is

b
Q:/ cpu(x,t)dx.S,

where c is the specific heat, p is the density. So

b
dQ/dt:/a cpgtu(x,t)dx.S

(assuming that we can take the t-differentiation inside the z-integration —
"differentiating under the integral sign”; this is justified under sufficient
smoothness conditions, which we assume here). Equating,

b o2 bood
(dQ/dt =) K/a @u(:ﬁ,t)dwﬁ:/a cpau(x,t)dxﬁ’.
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Cancel S. This holds for all a, b. So the integrands must be equal:
2 0
K@u(x, t) = cpau(x,t).
Write k := K/cp for the thermal diffusivity. Then
;;u(x,t) = cpiu(:t,t)/k,
the heat equation.

Subscript notation:
Uz = Uz /K.

Higher dimensions:
Upy + Uyy = W /K (2D);  Upy + uyy + u., = w/k  (3D).

Separation of variables.

For u(x,t) = X (x)T(t), uge = uy/k: X"T = XT/k,
X"/X =T/Tk = const = —C?,

say:
T)T = —kC?, T = const.e 5
(so temperature decreases with time — exponential increase with time is un-
physical, hence the minus sign in —C?).
As for the wave equation, X" /X = —C? gives X = cos Cz, sin Cx. Sup-
pose we impose the BCs

u(0,t) =0, u(l,t) =0

(bar of length ¢, with temperature fixed at both ends at 0° C); similarly for
other fixed temperatures (which we can choose as 0 by altering the origin of
temperature), and 1C

u(z,0) = f(z),
the initial temperature distribution (given by the initial heat distribution).
Then X = AcosCx + BsinCz and X(0) = 0 gives A = 0. Then X =
BsinCX and X (¢) =0 gives C¢ = nm, C = nn/l. So

. _ 2.2
B, sinnm /0 e kTt
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is a solution. By linearity (= superposition),

oo
. _ 2,2
u=> B,sinnr/l e ¥ b/t

n=0

is a solution. ICs: -
> B,sinnt/l = f(z).
n=0
This is a Fourier series for f, from which we can determine the constants B,
—see Ch. V.
Steady state.
As t — oo, the time-dependence dies away. The heat equation then
simplifies to u,, = 0, giving

u(r) = A+ Bz,

If the BCs are (¢ = 1 say) u(0) = wup, u(l) = uy, this gives A = wuy,
B =u; —ug. Sou=1up; =1up+ (u; —up)z is a particular integral (PI). But
it does not satisfy the IC u(z,0) = f(z).

To solve the full heat equation wu,, = u;/k, with BCs u(0,t) = wuy,
u(1,t) = uy and IC u(z,0) = f(z), take the complementary function

D
. _ 2.2
U= Ucp = ZBn81nn7r/€ e knimt/t

n=0
and add it to upy:
> 2.2
u=upr+ ucrp = ug + (u1 — ugp)x + Z B sinnr/l e7<T te
n=0

with B,, the Fourier coefficients of f (Ch. V).

3. LAPLACE’S EQUATION (P. S. LAPLACE (1749-1827), Mécanique
céleste (1799-1825, Vols 1-5); S. D. POISSON (1781-1840) in 1813).
The steady-state solution of the heat equation satisfies

Uge = 07 Uy + Uyy = 07 Ugy + Uyyy + U, = 0

in one, two and three dimensions.
For reasons which will emerge later (Ch. VI), this equation arises in other
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physical contexts. It is called Laplace’s equation. It arises in:
FElectromagnetism (EM) and gravitation (celestial mechanics, astrophysics).
The potential (potential function) satisfies Laplace’s equation if there are no
sources of mass or charge present, Poisson’s equation

Ugg + Uyy + Uy, = dmp

if mass or charge density p is present.
Separation of variables. In two dimensions, u,, = —u,,. Take u(z,y) =
X (@)Y (y):

X//Y — —XY”, X/I/X — _Y///Y — _k27

say, the separation constant (w.l.o.g., k > 0).
X(z) = etk Y(y) =sin ky, cos ky, = M cos / sin ky.

As before, we can superpose solutions, and use BCs or ICs to determine con-
stants.

Again as before, for unbounded regions, exponentially growing potentials
are unphysical: the potential generated by a charge or mass decreases to zero

at infinity.
Laplacian.
o? 0? 0?
V3, or A, = @*Tyﬁ@ =Dy +Dyy+D.. or Dy + Dyy+ D3

is called the Laplacian operator, del (A) or nabla squared (V?); the Laplacian
of u is

0%u N 0%u N 0%u
ox?  0Oy> 022

Viu, or Au,:= = Ugg + Uyy + U,z  OF  Upy + Ugo + Uss.
Other coordinate systems.

As well as Cartesian coordinates (x,y, z), other possible coordinate sys-
tems include:
Plane polars (r,0); cylindrical polars (r,0, z) — plane polars + z in the third
dimension;
Spherical polars: (r,0,¢): r = distance from the origin;

6 = longitude; ¢ = colatitude
(think of €, ¢ as angle variables on the earth’s surface and r as the radius of
the earth). Select the coordinate system to reflect any SYMMETRY present
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in the problem.
Classification.
Recall that the general algebraic equation of the second degree in two
variables is
az® +bry + ey’ +dov+ey+ f =0.

By completing the square and changing variables, one can reduce to one of
azr® +by* = c (two second-order terms),

az® = by (one second-order term).

In the first, we can take a > 0 w.l.o.g.; then the sign of the other second=-
order term b is crucial. There are three standard forms:

2?)a® +y* /0 =1 (ellipse — both coefficients > 0);
22/a® —y*/b? =1 (hyperbola — one coefficient > 0, one < 0);
y? = 4da (parabola — only one second-order terms).

These curves are (including limiting cases — line-pair, line, point) the conic
sections or conics — intersections of a (doubly infinite) cone with a plane.
By analogy, we classify linear 2nd-order PDEs similarly:

a*ug, + 62uyy + 1st-order linear differential operator = 0
— elliptic, prototype Laplace’s equation,

g, — bzuyy + 1st-order linear differential operator = 0
— hyperbolic, prototype the wave equation;

a*uy, + 1st-order differential operator = 0

— parabolic, prototype the heat equation.
Laplace’s equation in (cylindrical) polars.
We quote:

1 1
Au = Uy + —up + —Ugg (+u,,) =0.
r r

So with symmetry (axial symmetry if z is present):
Upr + —uy, = 0.
T
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Write v := w,: v, = dv/dr —v/r; dv/v = —dr/r; logv = —logr + const;
vr = ¢; du/dr = c/r; du = cdr/r; u = clogr + d.
Laplace’s equation in spherical polars.

We quote:

_ lg(TQaiu + 1 g(singg)_’_#@
Cr2or or r2sinf 00 00’ " r2sin®6 062"
Spherical symmetry: /00 =0, 0/0¢ = 0. So Au =0 is

10, ,0u 0: 0, ,0u

Au

dar" o) =0 g g =0,
ou/or = c/r*; u=—c/r+a.

If u— 0 as r — oo (as is needed for the potential to be physical), a = 0:
u=u(r)=—c/r.

The force (electromagnetic or gravitational) is the derivative of the potential
(more generally, the gradient of the potential, in the language of Vector
Calculus — see Ch. VI), i.e.

Force = ¢/r?%.

This expresses two fundamental laws:
1. Newton’s Law of Gravity (Sir Isaac NEWTON (1643-1727); Principia,
1687):
The force due to gravity between two masses my, mo a distance r apart
1s
F = Cmymgy/r?,

where C' is the gravitational constant (an absolute constant).

2. Coulomb’s Inverse Square Law (C. A. COULOMB (1736-1806), in 1785).
Similarly for the electrostatic force.

Note. That two of the four fundamental forces of Nature — electromagnetism,
weak nuclear force (governing radioactivity), strong nuclear force (holding the
nucleus together — or protons would repel each other by electrostatic repul-
sion!) and gravity — are governed by the same Inverse Square Law is quite
remarkable. As you may know, the first three forces have been unified, but
not the first three with gravity.



