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Identity Matrix.
Recall the Kronecker delta δij:

δij := 1 if i = j, 0 otherwise

(Leopold KRONECKER (1823-1891); posth. book 1903).
The n× n matrix I, or In, with (i, j) element δij,

I =


1 0 . . . 0
0 1 0
...

. . .
...

0 1


is called the identity matrix.
Matrix Products.

Suppose
Ax = d

as above. Now make a change of variable x 7→ u, where

x1 = b11u1 + . . .+ b1nun,
... =

...

xn = b1nu1 + . . .+ bnnun,

or in matrix notation
x = Bu,

where B is the square matrix B = (bij). Then

xj =
∑
k

bjkuk,

so the above equation(s) ∑
j

aijxj = di

become ∑
j

aij
∑
k

bjkuk = di (i = 1, . . . , n).
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Write
cik :=

∑
j

aijbjk (i, k = 1, . . . , n). (∗)

Then this becomes ∑
k

cikuk = di (i = 1, . . . , n).

In matrix notation, this is
Cu = d,

with u, d n-vectors (columns), and C = (cij)
n
i,j=1 the square matrix of order

n given by (∗). We call C the matrix product of A and B, in that order:

C =: AB.

So we can now combine
Ax = d

and
x = BU

as
Ax = A(Bu) = (AB)u = Cu = d,

as above. So:

If A = (aij), B = (bij), C = AB = (cij), where cij =
∑

k aikbkj.

Note. 1. Learn the pattern of suffices here. It does not matter which of i, j,
k we choose. What matters is the linking via consecutive suffices, as above.
2. In the Einstein summation convention, this becomes simply

cij = aikbkj

(summation over k understood). Make your own personal choice about when
to use this – always, never, or when it seems convenient.
3. The matrices A, B need not be square, but they must be conformable: if
A is m× n, B is n× p, then C = AB is m× p. Matrix multiplication is row
by column: the number of rows of the first factor must be the same as the
number of columns of the second factor. (In Ch. VI we will deal with dot
products, or inner products, of vectors. This is an example; such products
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are only defined for vectors of the same length.)
4. If A is m× n, B is n× p, C is p× q, ABC is m× q, defined as

ABC := A(BC), or (AB)C.

These two are the same:

((AB)C)ij =
∑
k

(AB)ikCkj =
∑
k

∑
ℓ

aiℓbℓkckj =
∑
ℓ

aiℓ
∑
k

(BC)ℓj = (A(BC))ij.

That is, matrix multiplication is associative.
So we do not need brackets when writing matrix products. So we should

not use brackets when writing matrix products.
We should use brackets when needed to avoid ambiguity (a sin in Math-

ematics), but not otherwise (as we should always use the lightest notation
that does the job). Similarly with mathematical notation generally!
5. But matrix multiplication is not commutative. Even if AB and BA are
both defined (both products are conformable – this can happen only if A and
B are both square and of the same size),

AB ̸= BA

in general. If one has AB = BA, one says that A and B commute.
6. This non-commutativity is essential in Quantum Mechanics, e.g. in the
Heisenberg commutation relations

[p, q] := pq − qp = ih̄

(Werner HEISENBERG (1901-1970), in 1925. (Heisenberg’s formulation of
Quantum Mechanics is called Matrix Mechanics. When Heisenberg derived
it, he didn’t know what a matrix was!)
7. We can display a matrix A as a row of its columns, A = [a1, . . . , an] (or
as a column of its rows). The kth column of the matrix product C = AB is
then

ck = b1ka1 + . . .+ bnkan.

For, the ith element of the kth column of C is

cik =
∑
j

aijbjk =
∑
j

bjk[aj]i = [
∑
j

bjkaj]i.

This is the ith element of the above vector equation, on both sides. //
8. Determinants can be traced back to Leibniz (1684, unpublished in his
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lifetime), Cramer (below) and others; the term first appears in Gauss’ the-
sis Disquisitiones arithmeticae in 1801. Although matrices logically precede
determinants, they were developed after them. The term is due to J. J.
SYLVESTER (1814-1897) in 1850; the theory largely stems from a paper
of Arthur CAYLEY (1821-1895) in 1858 (this contains the Cayley-Hamilton
Theorem [Week 7], following work by Hamilton in 1853).

Multiplication Theorem.
Th.

det(AB) = det A det b.

Proof. If C := AB, by (7) above,

detC = detAB = det[b11a1 + . . .+ bn1an, . . . , b1na1 + . . .+ bnnan].

Expand the RHS by the first column. We get a sum of the form∑
j1

bj1,1det[. . .].

Expand each det here by the second column. We get a double sum, of the
form ∑

j1,j2

bj1,1bj2,1det[. . .],

and so on, finally getting ∑
j1,...,jn

bj1,1 . . . bjn,1det[. . .].

Each matrix whose det we are taking here is a row of columns of A. Each
such det with two columns the same vanishes. So we can reduce the ‘big’
sum (nn terms) to a smaller sum with all columns different (n! terms). Then
we have a permutation of the columns, σ say, giving

detC =
∑
σ

bσ(1),1 . . . bσ(n),ndet[aσ(1), . . . , aσ(n)].

Putting the columns here in their natural order,

detC =
∑
σ

bσ(1),1 . . . bσ(n),n.(−1)sgn(σ)det[a1, . . . , an].
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The determinant here is detA, so we can take it out. This leaves detB, so

detC = det(AB) = detA.detB. //

Adjoint.
If A = (aij) is n× n:

theminor |Aij| of aij is the determinant of the matrix Aij obtained by deleting
the row and column containing aij;
the cofactor of aij is the signed minor ±|Aij| (the sign depends on whether
the position (i, j) gets a + or a - sign in the expansion of the determinant
– think of + as white and - as black, on a chessboard with white in the top
left-hand corner);
the adjoint adjA of A is the n× n matrix with (i, j) entry

(adjA)ij := ±|Aji| :

the adjoint is the transposed matrix of cofactors.

Th.
A.adjA = adjA.A = |A|.I.

Proof.
(A.adjA)ij =

∑
k

aik(adjA)kj =
∑
k

aik.± |Ajk|.

Recall that detA =
∑

k aik.± |Aik|, expanding detA by the ith row, So this is
the determinant, expanded by the ith row, of the matrix obtained from A by
replacing its ith row by its jth row. This determinant is 0 if i ̸= j (det of a
matrix with two identical rows vanishes), but if i = j it is detA. Combining,

(A.adjA)ij = |A|.δij = |A|.Iij,

giving
A.adjA = |A|.I,

and similarly
(adjA).A = |A|.I. //

Inverse Matrix. Call a square matrix A singular if |A| = 0, non-singular
if |A| ≠ 0. The inverse matrix A−1 of A is undefined if A is singular; for A
non-singular,

A−1 :=
adjA

|A|
.
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So by above,
AA−1 = A−1A = I.

Solution of Linear Equations.
For A square,

Ax = b

has a unique solution x iff A is non-singular,

|A| ̸= 0.

Then the unique solution is
x = A−1b.

For, just pre-multiply by A−1: as A−1A = I,

A−1Ax = Ix = x = A−1b. //

Note. If A is singular, |A| = 0, A−1 does not exist, and there are either
no solutions or infinitely many, depending on the rank (order of the largest
non-zero minor) of the augmented matrix (A, b). We omit further detail.

Cramer’s Rule (G. CRAMER (1704-1752) in 1750).
Th. If |A| = 0, the solution x to Ax = b is given by

xi = ∆i/∆,

where ∆ = |A| and ∆i is the det of the matrix Ai obtained from A by
replacing its ith column by the RHS b.
Proof.

(A−1b)i =
∑
j

(A−1)ijbj =
∑
j

±|Aji|bj/|A|

=
∑
j

±bj|Aji|/|A| = |Ai|/|A| = ∆i/∆,

expanding ∆i by its ith column. //

Gaussian Elimination.
Although Cramer’s Rule is theoretically neat, it does not provide an effi-

cient way of actually calculating the solution numerically. For this, we need

6



a procedure such as Gaussian elimination, below.
Given the equations we encountered earlier, Ax = b or in scalar notation

a11x1 + . . .+ a1nxn = b1,
... =

...

a1nx1 + . . .+ annxn = bn.

To solve this, we find a coefficient of x1 (say) which is non-zero (if there
is none, x1 is missing, and we can eliminate it and one equation). We can
take this as a11 – if not, re-order the equations. Divide the first equation by
a11 ̸= 0, to make the coefficient of x1 1.
Note. If a11 is small (near 0), dividing by it is numerically unstable (small
rounding errors in a11 would be magnified – think of relative v. absolute error
here!). For maximum numerical stability, choose as a11 the coefficient (a1i,
say) of largest modulus, and bring this to the (1, 1) position by re-ordering
the equations.

We now have equations of the form

x1 + . . .+ a1nxn = c1,

(a21/a11)x1 + . . . = c2,
... =

...

(a1n/a11)x1 + . . . = cn.

Subtract the appropriate multiple (ai1/a11) of the first equation from the ith
equation. This eliminates x1 from the ith equation for i > 1, giving a set of
equations whose matrix has only 0s below the diagonal in the first column.

Now leave the first equation (n variables), and focus on the remaining
n − 1 equations (in n − 1 variables). Treat this new set as we treated the
old set – and repeat the operation, n− 1 times. As at each step we obtain 0s
below the diagonal in the current first row, we end up with a set of equations
whose matrix is lower triangular – has only 0s below the diagonal. For such
a lower triangular system, we can solve easily, by back-substitution. The last
equation has only one unknown; solve for it. Then back-substitute in the
next one up, which then has only one unknown; solve for it. Repeating this,
we solve the entire system.

This method of Gaussian elimination was used by C. F. GAUSS (1777-
1855) (c. 1805, calculating the orbit of Pallas, and 1809, of Ceres).
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Numerical Linear Algebra.
This is a subject in its own right. Also, some computer packages/programming

languages are specifically geared to matrix computation, e.g. MATLAB.
Similarity.

Imagine a curve – ellipse, say – or surface – ellipsoid, say. It is still an
ellipse/ellipsoid if we change coordinates. We now study such changes of
coordinates.

Take a linear system of equations

y = Ax,

and a new coordinate system
x = Px′

(x′ to save using a new letter – no differentiation involved!), where P is non-
singular (so we can change back via x′ = P−1x). The new system is y′ = A′x′,
or

A′x′ = y′ = P−1y = P−1Ax = P−1APx′.

So
A′ = P−1AP.

Such matrices A, A′ are said to be similar.
Diagonalization.

Suppose we want to change A by a similarity transformation to a diagonal
matrix D (as in reducing an ellipse to standard form, say). Then as above
D = P−1AP , or

AP = PD.

If
P = [p1, . . . , pn] row of columns, D = diag(d1, . . . , dn),

this is

A[p1, . . . , pn] = [p1, . . . , pn]


d1

. . .

dn

 = [d1p1, . . . , dnpn],

or
Api = dipi (i = 1, . . . , n).

This has the form of an eigenvalue problem; see Week 7.
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