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Eigenvalues and Eigenvectors.
For a square matrix A, if

ax = λx

for a non-zero vector x and scalar λ, x is called an eigenvector, with eigenvalue
λ (eigen = proper, German; other terms are proper value/vector, character-
istic value/vector). Then

Ax− λx = Ax− λIx = (A− λI)x = 0.

But x ̸= 0. Since x = 0 is trivially also a solution (which is why we require
x non-zero for an eigenvector), the solution is non-unique. So the matrix
A− λI is singular, i.e. has determinant 0:

|A− λI| = 0.

This is called the characteristic equation (or eigenequation) of A. It is a
polynomial equation of degree n, the order of A (n × n), in λ. So by the
Fundamental Theorem of Algebra (Ch. II), there are n roots λ1, . . . , λn,
possibly complex, counted according to multiplicity.

The characteristic equation |A− λI| = 0 is∣∣∣∣∣∣∣∣∣∣
λ− a11 a12 a1n
a21 λ− a22
...

. . .

an1 λ− ann

∣∣∣∣∣∣∣∣∣∣
= 0,

or
λn − (a11 + . . .+ ann)λ

n−1 + . . .+ (−)n|A| = 0

(for the constant term, put λ = 0 to get |A|). Write

tr A := a11 + . . .+ ann

for the trace of A, the sum of the diagonal elements. Thus the ch. equation
is

λn − trA.λn−1 + . . .+ (−)ndetA = 0.
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If all the eigenvalues are distinct, one can show that their eigenvectors are
linearly independent (no sum of multiples can vanish unless all coefficients
vanish), meaning that the matrix P = [p1, . . . , pn] they form is non-singular.
If the eigenvalues are not distinct, we may not be able to find a full set of
linearly independent eigenvectors, and then P is not similar to a diagonal
matrix.
Example.

A =

(
4 −2
3 −1

)
; ch. equation

∣∣∣∣∣ 4− λ −2
3 −1− λ

∣∣∣∣∣ = 0,

(λ−4)(λ+1) = 0, λ2−3λ+2 = 0, (λ−2)(λ−1) = 0, λ = 1 or 2.

λ = 1: Ax = x, (
4 −2
3 −1

)(
x1

x2

)
=

(
x1

x2

)
,

This gives two equations, both

3x1 − 2x2 = 0

(check!). So x1 = 2x2/3. We can take x2 = 3 (though any other non-zero
choice is possible), and then x1 = 2. So the e-vector for the e-value λ = 1 is

x =

(
2
3

)
.

Similarly, λ = 2 gives two equations, both (check!)

2x1 − 2x2 = 0.

We can take x1 = 1, and then x2 = 1. So the e-vector for the e-value λ = 2
is

x =

(
1
1

)
.

So

P =

(
2 1
3 1

)
;

|P | = 1,

P−1 = −
(

1 −1
−3 2

)
=

(
−1 1
3 −2

)
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(check). So

P−1AP =

(
−1 1
3 −2

)(
4 −2
3 −1

)(
2 1
3 1

)
=

(
−1 1
3 −2

)(
2 2
3 2

)
=

(
1 0
0 2

)
= D,

the diagonal matrix of eigenvalues.
Symmetry.

We quote: if A is symmetric (i.e., A = AT – symmetry about the diago-
nal, interchanging rows and columns has no effect)
(i) the eigenvalues λi are real;
(ii) the eigenvectors pi are orthogonal (i.e., if P := [p1, . . . , pn], P

−1 = P T ).
The Cayley-Hamilton Theorem.

A matrix polynomial is the result of replacing the coefficients in a poly-
nomial p(x) by matrices. Each such matrix polynomial is of the form

B(λ) = B0 +B1λ+ . . .+Brλ
r,

where each Bk is a matrix of constants and Br = 0 (unless B(λ) ≡ 0).
Lemma.

If B(λ) is a matrix polynomial and C = B(λ)(A− λI) is a constant ma-
trix, C = 0.
Proof.

Expanding B(λ)(A− λI) gives highest term −λr+1Br. There is nothing
to cancel this if Br ̸= 0, so B(λ) ≡ 0, so C = 0. //

Theorem (Cayley-Hamilton Theorem). A matrix satisfies its own char-
acteristic equation. That is, if the ch. equation is

f(λ) := |A− λI| = b0 + b1λ+ . . .+ bn−1λ
n−1 + (−)nλn = 0,

then
f(A) := b0 + b1A+ . . .+ bn−1A

n−1 + (−)nAn = 0.

Proof. In |A−λI| = 0, the elements are polynomials in λ. So the minors are
also polynomials in λ. The elements of the adjoint C(λ) := adj(A− λI) are
such minors, so

C(λ) = C0 + C1λ+ . . .+ Cn−1λ
n−1,

say. But by definition of the adjoint,

C(λ)(A− λI) = adj(A− λI)(A− λI) = |A− λI|I = f(λ)I. (1)

3



Now
Ai − λiI = (A− λI)(Ai−1 + λAi−2 + . . .+ λi−1I)

(check by multiplying out the RHS and cancelling terms in pairs). So

f(A)− f(λ)I =
n∑
0

biA
i −

n∑
0

biλ
iI =

n∑
0

bi(A
i − λiI)

=
n∑
0

bi(A− λI)(Ai−1 + . . .+ λi−1I) = D(λ)(A− λI), (2)

say. By (1) and (2),

f(λ) = [C(λ) +D(λ)](A− λI).

By the Lemma, f(A) = 0 (as the LHS is independent of λ –constant in λ). //

Example (to show that this has practical value, and can save work!). Find
A5, where

A =

(
2 3
3 5

)
.

The ‘obvious’ way is by three matrix multiplications: A2 = AA; A4 = A2A2;
A5 = AA4. Compare this with the following. The characteristic equation is

|A− λI| =
∣∣∣∣∣ 2− λ 3

3 5− λ

∣∣∣∣∣ = λ2 − 7λ+ 1 = 0.

By the Cayley-Hamilton Theorem,

A2 − 7A+ I = 0, A2 = 7A− I, A = 7I − A−1,

A−1 = 7I − A =

(
5 −3
−3 2

)
(easy anyway: |A| = 10−9 = 1, so A−1 is the transposed matrix of cofactors,
so we can read it off from A by sight – and you should check this). Then

A4 = (A2)2 = (7A−I)2 = 49A2−14A+I = 49(7A−I)−14A+I = 329A−48I,

(343 - 14 = 326),

A5 = A.A4 = 329A2 − 48A = 329(7A− I)− 48A = 2255A− 329I

(2303 - 48 = 2255),

A5 = 2255

(
2 3
3 5

)
− 329

(
1 0
0 1

)
=

(
4181 6765
6765 10946

)
.
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V. FOURIER SERIES AND TRANSFORMS

1. FOURIER SERIES

Recall (Ch. II)

2 sinmx cosnx = sin(m+ n)x+ sin(m− n)x (m,n = 0, 1, 2, . . .).

Integrate from 0 to 2π: if m ̸= n,

2
∫ 2π

0
sinmx cosnxdx = − 1

(m+ n)
[cos(m+ n)x]2π0 − 1

m− n
[cos(m− n)x]2π0

(if m = n, the second term is 0, so there is no need to integrate it). So: for
m, n integer, ∫ 2π

0
sinmx cosnxdx = 0.

Similarly,
2 cosmx cosnx = cos(m+ n)x+ cos(m− n)x.

As above, this integrates to 0 by periodicity of sin, unless m = n, when
2cos2nx = cos 2nx+ 1,∫ 2π

0
cos2nxdx =

1

2

∫ 2π

0
cos 2nxdx+

1

2
.2π =

1

2
[
1

2n
sin 2nx]2π0 + π = π.

2 sinmx sinnx = cos(m− n)x− cos(m+ n)x,

and similarly∫ 2π

0
sinmx sinnxdx = 0 (m ̸= n), π (m = n).

Now write, for the trigonometric functions,

ϕ0(x) =
1√
2π

, ϕ2n−1(x) =
cosnx√

π
, ϕ2n =

sinnx√
π

(n = 1, 2, . . .).

Then ∫ 2π

0
ϕm(x)ϕn(x)dx = δmn
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(writing δmn for the Kronecker delta – 1 if m = n, 0 otherwise).
Similarly, using complex exponentials: if

ϕn(x) =
einx√
2π

=
cosnx+ i sinnx√

2π
,

∫ 2π

0
ϕmϕn =

1

2π

∫ 2π

0
ei(m−n)xdx = δmn.

For functions f , g on [0, 2π], integrable (say, continuous, or continuous
except for finitely many points), we write

(f, g) :=
∫ 2π

0
f(x)g(x)dx =

∫ 2π

0
fg

(bar = complex conjugate, as in Ch. II), and call this the inner product of f
and g.
Note. This is the continuous analogue of the inner product or dot product
between vectors.
Take f = g:

√
(f, f) is called the norm of f , ∥f∥.:

∥f∥2 := (f, f) =
∫ 2π

0
f(x)f(x)dx =

∫
|f |2.

Note that ∥f∥ ≥ 0, and > 0 unless f = 0 (almost) everywhere.
Note. If f is continuous, ∥f∥ = 0 implies f ≡ 0. For general f , it implies
that f = 0 ‘almost everywhere’ – at ‘most’ points. To make this precise
needs Measure Theory and the Lebesgue Integral, which is (way) beyond our
scope, so we do not pursue this.
Also

(af + bg, h) = a(f, h) + b(g, h)

(here of course f , g, h are functions and a, b are constants) – (., .) is linear
in its first argument. Similarly,

(h, af + bg) = a(h, f) + b(h, g)

– (., .) is antilinear in its second argument.
Note. One needs complex values for many applications, e.g. Quantum Me-
chanics. If everything is real, we do not need complex conjugates, and then
antilinear is the same as linear.
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