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Eigenvalues and Figenvectors.
For a square matrix A, if
ar = \x

for a non-zero vector x and scalar A, x is called an eigenvector, with eigenvalue
A (eigen = proper, German; other terms are proper value/vector, character-

istic value/vector). Then

Ar — ez = Az — Mz = (A— M)z =0.

But x # 0. Since z = 0 is trivially also a solution (which is why we require
x non-zero for an eigenvector), the solution is non-unique. So the matrix

A — M is singular, i.e. has determinant 0:

|A— | =0.

This is called the characteristic equation (or eigenequation) of A. It is a
polynomial equation of degree n, the order of A (n x n), in A. So by the

Fundamental Theorem of Algebra (Ch. II), there are n roots Aq,...

possibly complex, counted according to multiplicity.
The characteristic equation |A — A| =0 is

A —aq Q12 A1n
21 A — ag
— (),
(07951 /\ — Unn

or
N — (a1 + o Q)N+ (5)"A] =0

(for the constant term, put A = 0 to get |A|). Write

tr Ai=a11+ ...+ app

?)\'nJ

for the trace of A, the sum of the diagonal elements. Thus the ch. equation

1S

A — tr AN 4 4 (=) detA = 0.



If all the eigenvalues are distinct, one can show that their eigenvectors are
linearly independent (no sum of multiples can vanish unless all coefficients
vanish), meaning that the matrix P = [py, ..., p,] they form is non-singular.
If the eigenvalues are not distinct, we may not be able to find a full set of
linearly independent eigenvectors, and then P is not similar to a diagonal
matrix.

Ezxample.

4 -\ -2

3 —1-A

4 =2 .
A= ( 3 ), ch. equation

-

A=4)(A+1) =0, A =3X+2=0, (A=2)(A=1)=0, A=1lor2

A=1: Az = x,
4 -2 1 . X1
3 —1 i) - T2 ’

This gives two equations, both
3[L‘1 — 21’2 =0

(check!). So z; = 2z9/3. We can take x5 = 3 (though any other non-zero
choice is possible), and then z; = 2. So the e-vector for the e-value A = 1 is

- (2).

Similarly, A = 2 gives two equations, both (check!)
2!E1 — 2£L'2 = 0.

We can take xq; = 1, and then x5 = 1. So the e-vector for the e-value A = 2
is

So

|P|:17



(check). So

rar- (3205 )2

the diagonal matrix of eigenvalues.
Symmetry.

We quote: if A is symmetric (i.e., A = AT — symmetry about the diago-
nal, interchanging rows and columns has no effect)
(i) the eigenvalues \; are real;
(ii) the eigenvectors p; are orthogonal (i.e., if P := [py,...,p,], P~t = PT),
The Cayley-Hamilton Theorem.

A matrix polynomial is the result of replacing the coefficients in a poly-
nomial p(x) by matrices. Each such matrix polynomial is of the form

B(A) = Bo+ BiA+...+ B\,

where each By, is a matrix of constants and B, = 0 (unless B(\) = 0).
Lemma.

If B(\) is a matrix polynomial and C'= B(\)(A — AI) is a constant ma-
trix, C' = 0.
Proof.

Expanding B(A\)(A — AI) gives highest term —\""!B,. There is nothing
to cancel this if B, # 0, so B(A\) =0,s0 C =0. //

Theorem (Cayley-Hamilton Theorem). A matrix satisfies its own char-
acteristic equation. That is, if the ch. equation is

FOO = A= M| = b+ bA+ ...+ by A" L4 (=)"A\" =0,

then
f(A) ==by+biA+ ...+ b, A"+ (—)"A" = 0.

Proof. In |A— M| = 0, the elements are polynomials in A. So the minors are
also polynomials in A. The elements of the adjoint C(\) := adj(A — \I) are
such minors, so

CA)=Co+CiA+...+Cp A"
say. But by definition of the adjoint,

CONA =) =adj(A - A)(A— ) = |[A = M| = f(\NI. (1)

3

10
0 2

)

D,



Now
A" = NT = (A= A)(ATH £ XAT2 4 N
check by multiplying out the and cancelling terms in pairs). So
heck b Itipl he RHS and 11 S

f(A) — FOI = Zn:biAi — zn:bi)\il = zn:bi(A -
znj (A= AD(A™ + ...+ X)) = DIV (A = ), (2)

say. By (1) and (2),
F) =1CAN) + DA = D).
By the Lemma, f(A) = 0 (as the LHS is independent of A —constant in A). //

Ezample (to show that this has practical value, and can save work!). Find

A5 where
2 3
(2

The ‘obvious’ way is by three matrix multiplications: A? = AA; A* = A2A?,
A5 = AA*. Compare this with the following. The characteristic equation is

|2—/\ 3

|A— )| = =X -TA+1=0.

3 5—=A
By the Cayley-Hamilton Theorem,
A2 —TA+T=0, A2 =TA -1, A=T7I—-A1,

A-1:71—A:< i _3>

-3 2

(easy anyway: |A| =10—9 = 1, s0 A7} is the transposed matrix of cofactors,
so we can read it off from A by sight — and you should check this). Then

At = (A2 = (TA—-1)* = 49A* —14A+T = 49(TA—1)—14A+T = 329A—48I,
(343 - 14 = 326),

A% = A A* = 329A% — 48A = 329(TA — I) — 48A = 2255A — 3291
(2303 - 48 = 2255),

5 2 3\ 1 0\ [ 4181 6765
A _2255<3 5 329 0 1) \ 6765 10946 |-



V. FOURIER SERIES AND TRANSFORMS
1. FOURIER SERIES

Recall (Ch. II)
2sin mx cos nx = sin(m + n)zx + sin(m — n)z (m,n=0,1,2,...).
Integrate from 0 to 27: if m # n,

2m L cos(m — n)x]?™
gy feos(m - w7 — - feos(m — )

27
2/ sin mx cosnxzdr = —
0

(if m = n, the second term is 0, so there is no need to integrate it). So: for
m, n integer,

27
/ sin ma cos nxzdx = 0.
0

Similarly,
2 cosma cos nx = cos(m + n)x + cos(m — n)z.

As above, this integrates to 0 by periodicity of sin, unless m = n, when
2cos’nx = cos2nx + 1,

2w 1 2 1 1
/0 cos’nxdr = 5/0 cos 2nxdz + 5.2% = 5[% sin 2na|d" + 7 = 7.

2 sin ma sin nx = cos(m — n)x — cos(m + n)x,

and similarly
27
/ sinmzsinnzdr =0 (m#n), © (m=n).
0

Now write, for the trigonometric functions,

1 COS N sin nx

Po(z) = NorH GPan—1(x) = BV o T

2w

¢m(l‘)¢n(l‘)dl‘ = Omn

0



(writing d,,, for the Kronecker delta — 1 if m = n, 0 otherwise).
Similarly, using complex exponentials: if
et cosna 4 isinne

2

_ 1 2m
OmPn = 7/ M dr = .
21 Jo

For functions f, g on [0, 2], integrable (say, continuous, or continuous
except for finitely many points), we write

2w

2w
(f.9):= [ Fygl@idr = [ fg
(bar = complex conjugate, as in Ch. II), and call this the inner product of f
and g.
Note. This is the continuous analogue of the inner product or dot product
between vectors.

Take f = g: \/(f, f) is called the norm of f, || f]|.:

192 = () = [ rfde = [ 157

Note that ||f|| > 0, and > 0 unless f = 0 (almost) everywhere.

Note. If f is continuous, || f|| = 0 implies f = 0. For general f, it implies
that f = 0 ‘almost everywhere’ — at ‘most’ points. To make this precise
needs Measure Theory and the Lebesgue Integral, which is (way) beyond our

scope, so we do not pursue this.
Also

(af +bg, h) = a(f, h) + b(g, h)

(here of course f, g, h are functions and a, b are constants) — (.,.) is linear
in its first argument. Similarly,

(h,af +bg) =a(h, f) + b(h,g)

—(.,.) is antilinear in its second argument.

Note. One needs complex values for many applications, e.g. Quantum Me-
chanics. If everything is real, we do not need complex conjugates, and then
antilinear is the same as linear.



