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A system of functions ϕn on [0, 2π], or more generally on an interval [a, b],
is called:
orthogonal if (ϕm, ϕn) :=

∫ b
a ϕmϕn = 0 for m ̸= n;

orthonormal if (ϕm, ϕn) = δmn (orthogonal as above, plus the normalization
condition – divide by

∫
|ϕn|2).

Then ϕn above forms an orthonormal system (ONS).
If also

(f, ϕn) = 0

for all n iff f = 0 (everywhere in the continuous case, almost everywhere
more generally), we call (ϕn) a complete ONS (CONS). We quote:

the trigonometric functions above form a CONS;
the complex exponentials above form a CONS.

Given a CONS (ϕn), suppose a function f can be expanded in a series

∞∑
n=0

cnϕn(x),

representing f(x) in some sense. Write

f ∼
∞∑
0

cnϕn.

Multiply by ϕm and integrate. As
∫
ϕmϕm = δmn,∫

fϕm ∼
∞∑
0

cn

∫
ϕnϕm

=
∑
n

cnδmn

= cm,

or:
cn =

∫
fϕn.

Such a series is called the Fourier series of f w.r.t. the CONS (ϕn), and the
coefficients cn =

∫
fϕn are called the Fourier coefficients.
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Write

fn(x) :=
n∑

k=1

ckϕk(x),

and call the fn the partial sums of the Fourier series.
Now suppose that bk are arbitrary complex numbers, and write

tn(x) :=
n∑

k=0

bkϕk(x) (n = 0, 1, 2, . . .).

Then

∥f − tn∥2 :=
∫

|f − tn|2 = (f − tn, f − tn) = (f, f)− (f, tn)− (tn, f)+ (tn, tn).

Now

(tn, tn) = (
n∑
0

bjϕj,
n∑
0

bkϕk) =
∑∑

j,k

bjbk(ϕj, ϕk) =
∑∑

j,k

bjbkδjk =
n∑
0

|bk|2,

(f, tn) = (f,
n∑
0

bkϕk) =
∑

bk(f, ϕk) =
∑

bkck,

as the cn are the Fourier coefficients of f w.r.t. (ϕn). So

(tn, f) = (f, tn) =
∑

bkck.

So ∫
|f − tn|2 = ∥f∥2 +

n∑
0

|bk|2 −
∑

bkc−
∑

bkck.

But∑
|bk − ck|2 =

∑
(bk − ck)(bk − ck) =

∑
bkbk +

∑
ckck −

∑
bkck −

∑
bkck

=
∑

|bk|2 +
∑

|ck|2 −
∑

bkck −
∑

bkck.

Combining, ∫
|f − tn|2 = ∥f∥2 −

∑
|ck|2 +

∑
|bk − ck|2. (∗)

The last term is ≥ 0, and = 0 iff bk = ck for all k(= 0, 1, . . . , n).
Think of the LHS as a ”mean-square error”, or least-squares error, ap-

proximating f by
∑n

0 bkϕk on [a, b]. This error is minimized by taking bk = ck,
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the Fourier coefficients of f . Then (∗) gives:

Th. (i) The partial sums fn(x) of the Fourier series for f give the best least-
squres approximation to f based on the CONS (ϕn).
(ii) The series

∑ |cn|2 converges, and

∞∑
0

|cn|2 ≤
∫ b

a
|f(x)|2dx (BESSEL’S INEQUALITY).

(iii) Equality holds, i.e.

∞∑
0

|cn|2 =
∫ b

a
|f(x)|2dx (PARSEVAL’S FORMULA)

iff
∥f − fn∥ → 0

(i.e., fn → f ”in mean square”).

Note. Then also, if

f ∼
∑

cnϕn, g ∼
∑

dnϕn,

then

(f, g) :=
∫
fg =

∞∑
0

cndn.

Riemann-Lebesgue Lemma.
The subject of convergence of Fourier series is vast, and beyond our scope.

We will restrict attention to the case where the Fourier series converges, and
its sum is the function generating it:

f(x) =
∞∑
0

cnϕn(x).

Now the nth term of a convergent series tends to 0. But ϕn(x) does not tend
to 0 – indeed, by the normalization condition,

∫
|ϕx(x)|2dx = 1. So cn → 0:

cn :=
∫ b

a
f(x)ϕn(x)dx → 0 (n → ∞).

For the trigonometric and complex-exponential CONSs, this is the Riemann-
Lebesgue Lemma.
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Gibbs Phenomenon.
For the trigonometric and complex-exponential CONSs, each ϕn(x) is

continuous. So each partial sum fn(x) =
∑n

0 ckϕk(x) is continuous.
Suppose we form the Fourier series of a function f with a discontinu-

ity, e.g. a pulse. We are trying to approximate a discontinuous function by
continuous ones. This forces wild behaviour in the neighbourhood of the dis-
continuity: the partial sums ”overshoot and undershoot”. See the diagram.

Symmetry. Recall:
sin x is odd: sin(−x) = − sinx;
cos x is even: cos(−x) = cosx.

So if we represent an odd function by a Fourier series, we only need the sine
terms, and get a sine series; similarly for even functions and cosine series.
Boundary-Value Problems.

Recall (Ch. III) that to solve the heat equation

uxx = ut/k, (PDE)

u(0, t) = 0. u(ℓ, t) = 0, (BCs)

u(x, 0) = f(x) (IC)

we obtained a series expansion

u(x, t) =
∞∑
n=1

Bn sinnπx/ℓe
−kn2π2t/ℓ.

Then

u(x, 0) = f(x) =
∞∑
n=1

Bn sinnπx/ℓ,
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So Bn are the Fourier coefficients of f w.r.t. the CONS

ϕn(x) :=
sinnπx/ℓ√

ℓ/2

(
∫ ℓ
0 sin

2nπx/ℓdx =
∫ ℓ
0 (

1
2
− 1

2
cos ..) = 1

2
ℓ). Similarly for the wave equation.

Example: The Taut String.
Take for convenience ℓ = 2. The initial displacement is ”tent-shaped”:

linear on [0, 1], rising from 0 at 0 to h at 1; linear on [1, 2], decreasing from
h at 1 to 0 at 2:

f(x) = hx (0 ≤ x ≤ 1), h(2− x) (1 ≤ x ≤ 2).

The Fourier sine series is

f(x) =
∞∑
1

bn sin
1

2
nπxdx, bn =

∫ 2

0
f(x) sin

1

2
nπxdx.

So bn = h(I1 + I2), where

I1 =
∫ 1

0
x sin

1

2
nπxdx = − 2

nπ

∫ 1

0
xd cos

1

2
nπx = − 2

nπ
[x cos

1

2
nπx]10+

2

nπ

∫ 1

0
cos

1

2
nπxdx

= − 2

nπ
cos

1

2
nπ +

4

n2π2
[sin

1

2
nπx]10 = − 2

nπ
cos

1

2
nπ +

4

n2π2
sin

1

2
nπ,

and similarly

I2 =
∫ 2

1
(2− x) sin

1

2
nπxdx = +

2

nπ
cos

1

2
nπ +

4

n2π2
sin

1

2
nπ.

So

I1 + I2 =
8

n2π2
sin

1

2
nπ, bn = h(I1 + I2) =

8h

n2π2
sin

1

2
nπ.

If n = 2m is even, sin 1
2
nπ = sinmπ = 0.

If n = 2m− 1 is odd, sin 1
2
nπ = sin(mπ − 1

2
π) = − cosmπ = (−)m+1. So

b2m = 0, b2m−1 = (−)m+1.8h/(2m− 1)2π2. So

f(x) =
∑

bn sin
1

2
nπx =

8h

π2

∞∑
m=1

(−)m+1 sin
1
2
(2m− 1)πx

(2m− 1)2)
.
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So (III.1: The wave equation: Solution by separation of variables): with c
the velocity as in the wave equation, the displacement y(x, t) at point x and
time t is

y(x, t) =
8h

π2

∞∑
m=1

(−)m+1 sin
1
2
(2m− 1)πx

(2m− 1)2)
cos

1

2
(2m− 1)πct.

2. FOURIER INTEGRALS

Fourier series involve sines and cosines (or equivalently, complex expo-
nentials), which are periodic. They are suitable for use on a finite interval,
[0, ℓ] say, and involve sums.

What about non-periodic functions, and/or infinite intervals? Can one
handle these by some limiting operation on sums, and if so does it involve
integrals?
Defn. If f is a function on the real line, integrable, so that∫ ∞

−∞
|f(x)|dx < ∞

– we quote that this implies that∫ ∞

−∞
f(x)dx exists

– the Fourier transform of f(x) is

f̂(t) :=
∫ ∞

−∞
eitxf(x)dx.

We quote that under suitable conditions, if we take the (slightly modified)
Fourier transform of the Fourier transform, we recover the original function.
This is the Fourier Integral Theorem (FIT):

f(x) =
1

2π

∫ ∞

−∞
e−itxf̂(t)dt.

The map f 7→ f̂ is the Fourier transform, while f̂ 7→ f is the inverse Fourier
transform. Note:
1. e+itx in the first, e−itx in the second;
2. The factor 1/2π reduces the symmetry. One can ‘split the difference’, and
have a factor 1/

√
2π in each. Always check on which convention is in use
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when consulting a textbook, etc.
Example: The Normal Distribution[s].

Recall that a non-negative function f integrating to 1 is called a (proba-
bility) density (function). The interpretation is that ifX is a random variable
with this density, then

P (a ≤ X ≤ b) =
∫ b

a
f(x)dx :

the probability of getting a value in the interval is obtained by integrating
the density over the interval.

The most important example is the standard normal density,

ϕ(x) :=
1√
2π

exp{−1

2
x2}.

It is not obvious, but it is true and important, that this is a density – i.e.∫
ϕ = 1, but we must refer elsewhere for this (see lectures, or any book,

on Probability or Statistics; there is a proof on my website, link to MPM3
Complex Analysis, Lectures 26-27).

Proposition. ϕ(x) := 1√
2π
e−

1
2
x2

has Fourier transform

ϕ̂(t) = e−
1
2
t2 .

Proof. Consider

M(t) :=
∫ ∞

−∞
etxϕ(x)dx =

1√
2π

∫ ∞

−∞
etx−

1
2
x2

dx

=
1√
2π

∫ ∞

−∞
exp{−1

2
(x− t)2 +

1

2
t2}dx

= e
1
2
t2 .

1√
2π

∫ ∞

−∞
exp{−1

2
(x− t)2}dx

= e
1
2
t2 .

1√
2π

∫ ∞

−∞
e−

1
2
u2

du (u := x− t)

= e
1
2
t2

(the integral is 1, as e−
1
2
u2
/
√
2π is a probability density in u).

Formally replacing t here by it gives the result. This can be justified in
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two ways, both needing Complex Analysis (2nd year Maths!):
(a) by analytic continuation;
(b) using Cauchy’s Theorem to translate the line of integration.
We quote either of these, and this completes the proof. //

Recalling from Probability or Statistics the idea of a mean µ and variance
σ2 – given in the density case by

µ = E[X] =
∫
xf(x)dx,

σ2 = var[X] = E[(X − E[X])2] =
∫
(x− µ)2f(x)dx,

the above is the special case µ = 0, σ = 1 of the normal distribution N(µ, σ2)
with mean µ and variance σ2, for which we quote:

f(x) =
1√
2πσ

exp{−1

2
(x− µ)2/σ2}, f̂(t) = exp{iµt− 1

2
σ2t2}.

We shall need these below in dealing with the Heat Equation.
Spectrum.

We shall often use ω instead of t for the argument of the Fourier transform:

f̂(ω) :=
∫ ∞

−∞
eiωxf(x)dx.

We then think of |f̂(ω)| as representing the strength of f at frequency ω.
There may be sharp peaks in |f(ω)| graphed against ω – or even singu-

larities. These correspond to spectral peaks, or spectral lines, in spectroscopy.
Differentiation.

Formally differentiate

f(x) =
1

2π

∫ ∞

−∞
e−iωxf̂(ω)dω

w.r.t. x:

f ′(x) =
1

2π

∫ ∞

−∞
e−iωx(−iω)f̂(ω)dω,

f ′′(x) =
1

2π

∫ ∞

−∞
e−iωx(−ω2)f̂(ω)dω.

To summarize:

f(x) ↔ f̂(ω); f ′(x) ↔ −iωf̂(ω); f ′′(x) ↔ −ω2f̂(ω).
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